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PREFACE

ASP_ The Automatic Synthesis Program_ is a digital-computer program.

It is written in FAP and compatible with most IBM 7090-7094 installations.

ASP is an executive program enabling the user to sequence arbitrarily

some thirty subroutines. ASP is intended for a person who has some back-

ground in modern system theory_ especially linear algebra. Such a user can

obtain, with the help of ASP, easily and efficiently the numerical solution

of most (perhaps all) problems in system theory which involve linear mathe-

matics. Time-varying linear systems are included; in fact they will con-

stitute the most important practical applications. Among others, the follow-

ing subroutines are included: input-output calculationsj the operations of

matrix algebra_ computation of the exponential of a matrix_ the solution of

both discrete and continuous-time riccati equations.

The subroutines in ASP are sufficient to solve the most general pro-

blem of extremization of quadratic functionals of the state of a linear

dynamical system. This includes_ in particular_ the synthesis of the Kalman-

filter gains and of the optimal feedback gains for minimization of a quadratic

performance index 3 possibly with hard terminal constraints. Use of the pro-

gram is by no means restricted to these two problems_ however_ as is evident

from the table of contents.

In short_ ASP is a very flexible program which can be conveniently

and quickly programmed to give the solution to a variety of problems. Input

consists of a description of the equations to be solved as well as numbers

specifying the system matrices. The programming has been made as "macroscopic"

as possible; many special features have been built into the subroutines for

the convenience of the user and to lessen numerical difficulties. We hope

that the availability of a convenient and reliable program such as this will

contribute to greater awareness of the powers of modern system theory# parti-

cularly in the areas of control, statistical filtering_ and optimization.
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After this very terse description, let us outline what ASPis not.

It is not an unusually accurate program nor is it a very fast program. Its

limitations arise mainly from the fact that integration is done by the
matrix exponential (hence all n2 couplings are considered whether or not

they exist) and because the matrix exponential computation involves scaling

problems that do not arise in ordinary numerical integratioD scheme[s. We

try to compensatefor this by automatic sealing. A major cause of time

wastage is the compilation of the instruction data every time the deck goes

on the machine. That is, the ASPexecutive routine is not recompiled, but the
list of ASPinstructions to the executive routine are translated to a system

of calling sequences for the ASPsubroutines. A binary program could be

punched easily from the machine contents, but we have never done enough

repetitive work to justify it.

Given these limitations, what uses do we see for ASP?

Oneof the chief benefits will be educational. This manual contains

text-book examples and somemore involved practical problems. These illus-

trate not only the use of ASPbut also the steps required to solve these

various problems. They provide concrete cases3 with real numbers, for the

novice in optimal system theory.

ASPis expected to be very useful as an analytic design tool where

extreme precision is not required. In addition to the problems discussed

in this report, the program has been used satisfactorily on several reentry

problems_ lunar landing problems, airplane control, and control of large
flexible boosters.

Someremarks maybe useful here on optimal control as a practical

tool. Manyengineers have questioned the relevancy of linear optimal control

to practical problems because the performance index has no simple relation to

the criteria which must be imposed (bounded state variables or boundedcontrol

variables, for instance). There are two important considerations here:

(i) It has been our experience that it is usually easy to alter the

performance index by experimentation to achieve the desired shape of the

trajectory. That is, after a few trials we can usually find an optimal (in

the modernsense) control which will appear satisfactory also to the engineer

who works with older style criteria.
iv



(ii) The computation of exact nonlinear control laws is at

present prohibitively expensive. It is far more sensible to iterate a

general-purpose linear optimization programby trial and errnr than to

write a separate, exact, nonlinear optimization program for each case.

This will remain true even whenand if nonlinear optimization methods

becomemore generally available. (Note that today (1965) only _ few

special nonlinear optimization procedures have been studied from the

point of view of numerical analysis. )

As for the availability of the ASPprogram_ it can be obtained

on request from the Theoretical Guidanceand Control Branch, Ames

Research Center, NASA_Moffett Field, California. Further details re-

gardin_ tapes_ listings, and check cases canbe arranged.

Weare indebted to manypersons for their efforts, but we

particularly wish to thank Mr. Elwood C. Stewart of AmesResearch
Center for his interest and assistance and Miss Elsie Cerutti of

RIAS for her excellent programmingwork.

This research was supported by National Aeronautics and Space

Administration Contract NAS2-1107administered by the AmesResearch

Center, Moffett Field, California.
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INTRODUCTION

This report may be divided into three parts: Chapter I, Chapters

II-VIII, and Chapters IX-XVIII.

Chapter I describes the basic mechanics of ASP 3 its input format,

vocabulary, ezror returns 3 and idiosyncrasies. For tae person who under-

stands his problem, knows what mathematical steps are required in its

solution, only Chapter I is needed. In the dictionary, the subroutines

are described by specifying the output and how each of the arguments is

used. Then referring to the coding sheets at the end of Chapter I, we

can determine in which columns the argument names appear. For instance,

in the dictionary description of EAT, a matrix PH is output. When

using the EAT routine we may call this output by any other two-character

symbol, but that symbol must appear in the col_nns where PH appears in

the coding sheets.

Chapters II through VIII describe in detail the more important

subroutines available. Generally some theoretical background will be

given deriving from basic principles the application of the particular

routine to linear systems theory. In addition, the method of computa-

tion will be explained with remarks about numerical problems and several

check problems given. These chapters will be useful not so much for

helping in the actual use of the program but as somewhat more than an

introduction to the theory, particularly as it is used in computation.

For instance, Chapter VIII provides an ad ho___cderivation of the optimal

control law for a discretized system with quadratic performance index.
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Chapters IX through XVIII are examples in somedepth of computa-

tion and analysis. The selection of problems solved is far from compre-

hensive, yet the basic problems of using the subroutines are well covered.

The specific ASPprograms used appear in the figures for each chapter and

whenread_ should provide a working knowledge of the ASPlanguage. It

is our hope that these problem chapters will be an introduction to ASP

and a tutorial in linear systems theory from a computational point of
view.
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CHAPTER I

ASP - THE AUTOMATIC SYNTHESIS PROGRAM

i. History. The nature of our work is such that a basic set of matrix

subroutines which can be sequenced in a variety of ways would solve many

problems. In the original formulation of a program_ several approaches

were considered. Since there were available at the time many of the

necessary subroutines, a programmer could write new connective code very

easily for each separate problem in the 709-7094 SOS system. This method

has the advantage of immediate availability with very little program veri-

fication since the component programs were already checked out. With

increased outside interest in the program, it was discovered that many

of the IBM computer installations (e.g., Wright Field) will not accept

SOS programs. Consideration was also being given to writing a Fortran

program with input which would determine the sub-programs to be utilized.

A single program with code accepting decision points to determine flow would

be easy to write but the data becomes extremely unwieldy when the number of

_iff .... _ lay _ antici-permutations of routines is large; an even greater _" _,,i+ T _,_

pating every type of problem which would _ solved. We decided to adopt a

scheme which may be regarded roughly as a matrix formula translator enabling

us to write macro-instructions directly in terms of the needed matrix opera-

tions. Since so much of the programming had already been done in the SOS

system_ we decided to keep the SOS input-output unit and assemble it as the

ASP I-_ package. Again we ran into difficulty with another computer installa-

tion which did not .have tape units attached directly to the 7094. Therefore

ASP has evolved into a FAP coded-formula translator with Fortran II input-

output_ which may be loaded with the main ASP deck or called off the system

tape.
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2. I-_ Requirement. Before going into more detail about the main program,

several features concerning input-output should be pointed out. Contact is

made with the I-_ routines through the following entry points: (TSB), (STB),

(TSH), (STH), (SPH)3 (BST), (RSW)_ (RLR), (WLR)3 (FIL), (RTN)and EXIT. It

appears possible that with a knowledge of the function of each routine and

with more detail on calling sequences and format, one could run this deck

at any IBM installation with a 32 K IBM 7090-7094 and any tape units re-

quired by the I-_. The format specifications are standard Fortran II as

described in Form C28-6066-_. Use is made of the A, H, E, F, and I mode,

multiline blocks of print of 120 characters specified by a slash, and columD

skip specified by an X. The logical tape number for input is _, for output

6. The only nonstandard feature is that the format specification is stored

in increasing storage locations. The code which indicates this type of

format statement is a 1 in the decrement of the calling sequence.

3. Description of ASP. ASP is composed of two parts, an executive routine,

whose function is to read, list, and store alphameric data and a group of

independent subroutines which are classified by use as mathematical - those

having to do with numerical analysis; data handling - those involved in

making storage available, moving information in core or between core and

tape; output - those which write alphameric or decimal information; input -

those which bring in decimal information; and logical - those which provide

a means of altering the progress of the program.

The executive program described diagramatically in Figure 4 expects

as a first card a date card of which there is one and only one in each data

deck. Then it begins reading until it finds a card with the operation

BEGIN in Columns 7-11, which signals the executive program that alphameric

information follows. This alphameric information is separated into 12, 6

character words, the first of which is a label or hes_ing ns_e, the second

word specifies the operation and words 3 through 12 contain the operands.

0perands may be referred to by a_two alphameric characters; followed by
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either a comma or blank character; their position following the name of

the operation specifies the role each plays in the operation. Resultant

matrix storage locations are created in the order in which they appear from

left to right. For instance when

PSEUO A, AI, RE,

ADD A_ B, C,

is first executed, if conformability requirements are satisfied and AI, RK,

and C have not been previously defined, they will appear in core in that

order• If one of the matrices AI, RK and C have been previously defined

and if the size of the new matrix is the same as the size of the core matrix

then the resultants will be stored in the defined region.

_d _ .... + If a _+_v.l_b_aiphameric info_nation has a fixed _^_

identifier is -A (- represents a blank) then any reference to A must be

written -A. A- will be defined as a different matrix. The same rule des-

cribes the label. The format then can be described in a very general way

as follows :

Columns

1-6

7-11

13 -14

15

16 -17

18

labels (may be blank)

ope rat ion

operand I or blank

blank or comma

operand 2 or blank

blank or comma

etc.

Specfically every instruction has an operation in Column 7-11• Whether

operand 1 is in Column 13-14 depends on the instruction. See Figs. 1-3 for

the specific location of the matrix identifiers•
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In addition to the fixed format restriction there is a limit of

120 for the number of matrix identifiers. If this limit is exceeded error

statement number _ is printed.

Certainly every operation does not require lO words for the operands.

Therefore a test is made to eliminate anything beyond the first completely

blank word. This implies certain restrictions on the use of double-blank

as an identifier. Such a use is not recommended. This alphameric data from

the second word to the first blank word is stored downward unchanged in a

reserved block behind the program. Two words precede the stored data, a

machine instruction which acts a_ a transfer to the 30 subprograms and a

control word with the number of oper_nds for this inatr_icm. This is done

for every alphameric data cma_ except the BEGI|. 01_merve then, thmt the

data is stored to look like a series of call statements with their respec-

tive arguments, thereby acting as a stored progrsm. One is able to change

the direct flow through the stored program by use of the IF instruction

which in turn uses the label that was in Columns 1-6 of an alphameric data

card. If word 1 is not blank it is stored in a vector (dimension 40) of

labels along with the address of the core location which contains the transfer

for that operation.

The END instruction signals the end of the instruction data; and a

transfer is made to the first stored data point. Since the input tape is

now positioned after the END record any LOAD given in the stored program

will cause the input tape to be read for decimal information from that point.

To summarize, the data deck is in the following order: l) Date, 2) BEGIN,

3) any of the 30 numeric, input or output statements, 4) END, 9) decimal

data for the LOAD instructions or instruction in the order that the LOAD will

be executed. For information about the decimal data see LOAD in the dictionary

which follows.

Every subprogram has two entry points. The first entry point uses

the symbolic material, which is stored following the transfer instruction,

to determine the location of the first element of the operands. A number is

stored, in place of the alphameric symbol, which defines the position of
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that matrix in the ordered matrix storage area. This part of the subprogram

also defines a matrix region for the resultant and examines the operations

for conformability. If the region has already been defined, the size of the

defined region is compared with the size of the resultant matrix. If the

sizes are not equal error statement number 8 is printed and execution is

deleted. An error statement is also written if the matrices are not con-

formable. Finally "the transfer to entry point l" instruction is replaced

by a "transfer to entry point 2". The second part of the subprogram per-

forms the numerical calculation. It is this part of the subprogram which

is repeated if the operation is in the range of an executed IF instruction.

Care must be exercised in storing results in previously defined areas. The

row and column dimensions of the one may not be the same as the row and

column dimensions of the other; thus allowing undetected nonconformable

operations in any of the repeated operations since the confomabillty check

is made in the first part of the subprogram.

At present one can communicate with ASP by the following vocabulary

Mathematical

1. EAT 9. ADD

2. E T P H I 10. S U B T

3. T R NS I ll. MU LT

4. R I C AT 12. T R A N P

5. P S E U 0 13. NO R M

6. S AMP L 14. TRACE

7. I NV R S 15. P I Z E _

8. D E C 0 M 16. JUX T C

17. JUXTR
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Data Handling Output

8e

19.

20.

21.

22.

23.

SAVE

EQUAT

BLOT

REW

WEF

BSR

24. PRI NT

29. RINT

26. WRITE

27 . PUNCH

28. LOAD

29. BRING

Logical

30. I F

31. BEGIN

32. E NO

DICTIONARY

1. E A T. This program computes

B will be printed if P R I N T

be 30 x 30.

PH = eT'F and B = #etFdt; PH and

is punched in columns 95 to 29. F can

T-F
2. E T P H I. This program computes PH = e ; PH will be printed if

P R I NT is punched in columns 29 to 29, F can be 30 x 30.

ETPHI has the option that if a matrix symbol is contained in column

22 to 24 the value of t which will be used will not De the input t but

t l0 t

a value 2---k_ _" The value 2--_ will be stored in cor% identified by

the symbor in 22, 23.
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"3. T R N S I. This program computes y(t) and u(t) according to the

difference equations

x(t + _l ) = Px(t) + Gu(t)

u(t) = JR - Kx(t ° + ix2) , iT2 • t - to < (i+ 2

whe re

y(t) = Hx(t)

where X(to) = X and i is a positive integer.

Rather than describe the output in detail w_ have included a sample

T R N S I output as Fig. 19.

Print of t, the first two components of R, Y3 and the first

three components of u is done at intervals of xl" The control computa-

tion is done at intervals of _2 with _2 some positive integral multiple

of Vl and these steps are marked by an asterisk. Because there is room

for only 7 components of y, the H matrix should have less than 8 rows.

The problem terminates when the final time tf is reached.

The matrix T has elements x2 _ Xl' to3 and tf in that order.

4. R I C A T. This program computes P(t) and K(t) by the difference

equation

P(t + _) = [e21 + 822P(t)][ell + el2P(t)] -I

K(t) = CP(t)

with P(0) = Z and
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e21 e22

m

= PH.

In _Idition to the given equation there is an option in which if

there is a matrix name X in Columns 28-30 the computation for P(1) and

only P(1) will be

P(1) = [e21X + e22P(O)] [ellX + @I2P(O)]-i

If this option is used,

automatically printed.

Jell x + elaP(O)] Jell x + ezaP(O) ]-i is

This program also computes

zlPii(t + T) - Pii(t)l
A_= -,,_lPiiCt+

Computation continues until t + v is equal to or greater than TF, an

input number, or until AL is less than e, an input number. Printing is

controlled as follows. Pl controls the intermediate printing of K, P2

controls the intermediate printing of P_ P3 controls final K and P

print. If

if

Pl or P2 is

P3 is

0 there is no intermediate print

M there is a print every Mth iteration

0 there is no final K and P print

i there is a final K and P print.
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• PC is a matrix with fixed point elements Pl' P2' P3' and
(in that order). D is a matrix with elements c, • and _.

Where _ is 0 if the Riccati equation is knownto be linear and
nonzero otherwise.

_. P S E U 0. This program computesthe pseudo-inverse of P, storing it

in PI and the rank r of P, storing it in RK. The final pivotal ele-
ment and

P min(II(B_BllllB I)BII + II(B_B - I)B_II_ r

(see Chapter V and dictionary entry 1}) are also available as the second and

third elements of the 3 element matrix RE. Pseuo will use the pizer in the

machine and the p computation to determine the rank of P, if a 1 is

punched in Column 18; otherwise the pseudo inverse of P will be computed

with a pizer as read in by the PIZER instruction and no iteration as deter-

mined by p. Computation therefore will cease when rank is maximal or any

diagonal element is less than the product of pizer and the maximum diagonal

element. If the matrix P is nonnegative definite symmetric, a + sign

should be punched in Column 16; this will save time and improve accuracy,

since it will drop the symmetrizing steps. PI will he printed if PRINT

is punched in Columns 2_-29 and p as a function of rank, will follow PI

if a 1 appeared in Column 18.

6. S A M P L. This program computes P(t ° + N_) and K(t ° + N_) by the

difference equations

P(t + _) = F[P(t) - P(t)G'(GP(t)G' + R)_'GP(T)]F ' + Q

K(t) = FP(t)G'[GP(t)G' +R] _

with P(to) = PO.
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The pseudo-inverse in these equations is computedusing the value

of pizer which has been stored by the PIZER instruction and no p itera-
tion as described above.

Computation continues until the number of steps exceeds N, an

input number, or until AL is less than _ an input number. Printing

is controlled as follows; Pl controls the intermediate printing of K,

P2 controls the intermediate printing of P, P3 controls the final K
and P print. If

Pl or P2 is

0 there is no intermediate print

M there "is a print every Mth iteration

if P3 is

0 there is no final print

1 there is a final print.

D is a matrix with first element c and second element v.

PC is a matrix with fixed point elements Pl' P2' P_' and
that order).

N (in

7- I NV R S. The program finds y = p-l, provided P is not a scalar.

To invert scalars, P S E U 0 must be used. (See p. 21, Error 1 whendet P = 0

8. D E C 0 M. For any nonnegative definite symmetric, n-dimensional matrix

B of rank (in the sense of P S E U 0) r, this program returns matrices

T, Er and E such that T is nonsingular, E is an n-dimensional matrix
as defined by E = TBT' and E is some r columns of the n-dimensional

r

identity matrix where E E' = TBT'. In addition the matrix S = T -1, the
r r

permutation matrix P such that
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P E E' P' =

I

I
r

0

element, and p

0

0
n-r

and a 3 x i matrix RK with r, final pivotal

(in that orde_are also provided. If a 1 is punched in

column 18, the machine pizer will be used and the rank of B will be

determined by the computation p = rain IIS E E' S' - B[[p2r. If column 18

is blank, computation will cease when rank is maximal or any diagonal ele-

ment is less than the product of pizer and the maximum diagonal element.

Some care must be exercised in using DECOM in a loop since E may
r

change its dimensions. This of itself is not a problem since E is stored
r

in a sufficiently large area, n x n, but if E is transposed and the
r

dimension of E r' increases as iterations continue, then E'r will destroy

the storage following itself. This usually is not a serious restriction on

programming.

9. A D D. This program computes C = A + B. These matrices can be 30 x 30.

10. S U B T. This program computes C = A - B. These matrices can be

30 x 30.

ll. MULT.

able or 2) A

me nt s.

This program computes C = AB if l) A and B are conform-

is a scalar. The output of this program can have 900 ele-

12. T R A N P. This program computes the transpose B = A'.

13. N 0 R M. This program computes NA = z [aijl,
input to this routine can be a 30 x 30 matrix.

Max z laij[].TheJ

n

i4. T R A C E. This program computes TB = trace B =
i=Ibii"

15. P I Z E R will store two constants P1 and P2 which are used in

the P S E U 03 D E C 0 M, and S A M P L instructions. The program values

of the two constants are l0 -2 and 1 unless the P I Z E R instruction

stores other values. For a complete description of their use see Chapters V and VII.
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16. JUX T C. This program takes the m by n matrix A, the m by

p matrix B3 and forms the m by (n+p) matrix

C = [A BI.

JUXTCcan not be used in a loop if the output dimensions are changing.

17. JU X T R. This program takes the m x n matrix A, the p x n

matrix B_ and forms the (m+p) by n matrix

ing.

JUXTRcan not be used in a loop if the output dimensions are chang-

18. S A V E. This routine will write the given matrices on any of 9 units

or channels as defined by the _U tables of the installation monitor system.

In Column18 is punched a number 1 through 9 which is used as an entry to a
#

table common to all the tape instruction. This table will contain a logical

tape number which in turn is used by the Fortran I_U to select a tape channel

and unit. The logical tape number as stored in the present version of ASP

cortes oonds to the B channel units 1 through 9. The table is as follows:
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Column18 Logical number Actual channel
in FORTRANII I_

i 8 B-I

2 2 B-2

3 5 B-3

4 7 B-4

5 io B-5

6 12 B-6

7 14 B-7

8 16 B-8

9 18 B-9

One SAVE instruction can be used to store as many as 9 matrices_ giving each

a tape n_ which can be different from the cu_ _c. ±_ _= _m_±=, .._±_=_

A, B, and C are being saved on tape 5 and are being called D, E, and F

respectively. Operation is as follows: The unit reads the tape until a

record with the code word END is encountered, backspaces over that record,

writes the matrices, writes a record with the code END and then backspaces

over this last record. Some initialization therefore is necessary before

the first occurrence of the SAVE instruction. This initillzation can be

REW, WEF, REW.

19. E Q U A T. This instruction replaces completely except for identifica-

tion the matrix in the second half of the word with the matrix in the first

half, if the sizes are equal. In the example F1 will be replaced by F2,

F3, by F4. If F1 is undefined at the time of the instruction, F2 will

be stored in a second area and given the identification F1. F2 under any

situati'on will still be defined in storage. This instruction will handle

as many as l0 pairs of matrices.

20. B L 0 T. This instruction erases the matrix F and every matrix stored

after F_ thus making the storage area available for reuse. This instruction

cannot be used in a loop and will result in error statement 12 if an attempt

is made to execute a given B L 0 T instruction a second time.
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21. R E W. This instruction will rewind (to tape beginning) any one of

nine tapes as designated by the table shown in the S A V E instruction

(in the example, tape 5). The tape number is punched in Column 18.

22. W E F. This instruction will write a record with the code word E N D

on any one of nine tapes as designated by the table shown in the B A V E

instruction (in the example, tape 5). The tape number is punched in

Column 18.

23. B S R. This instruction will backspace i to 9 records (in the example

3) on any one of 9 tapes as designated by the table shown in the S A V E

instruction (in the example tape 5). The number of records is punched in

Column 15, the tape number in Column 18.

24. P R I N T. This instruction will print up to ten matrices in one

execution, printing each matrix, one row per line in a five-digit format,

with its row size 3 column size, exponent, and a three character title.

In the example, for i_stance, the matrix called CF in core will be printed

with title C L F. If several matrices can be contained completely on a

page, P R I N T will not eject to a new page for each matrix.

In addition to the above, there is an option in which every matrix

title following the first on the llst will be printed in functional nota-

tion using the first element of the first matrix on the list as the argu-

ment. To use this option put the argument name in the first word as usual

(Columns 13, 14) but leave the three character title region blank (Columns

16, 17, 18).

25. R I N T. This instruction will print up to ten matrices in one exe-

cution. Printing is done row-wise, six elements per line to the end of

the row, in an eight decimal place fko_ting point format if the column size

is greater than 6. Otherwise each row beings on a separate line. Several

matrices are printed per page if they can be completely contained on a

page. As in P R I N T, the row size, column size, and a three character

title are printed. Also as in P R I N T, the instruction can print the

title in functional notation.
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26. W R I T E. This instruction enables the person using the program to

print comments during the course of the program. These comments can use

Column_ 14-72 and might tell what the program is doing at various points.

They are not necessary to a knowledge of the output, however, because the

entire input data deck is printed by ASP. A page eject may be accomplished

by a W R I T E instruction with a 1 in Column 13, a line eject by 0 in

Column 13. A non-blank character must appear before Column 18; otherwise

that card is ignored.

27 • P U N C H. Just as P R I N T and F, I N T, the punch instruction

will handle a maximum of ten matrices in one execution, punching cards in

a form which is compatable with the L 0 A D routine. For each matrix

will be punched a row and column card with the identifying matrix name in

Columns 4-6. There is also an option in which matrices 2 through l0 can

_ identified as a f1_nction of matrix i. _nis option in _-_'_'^-_±u_to the

identification in Columns 4-6 will punch the first element of matrix i in

Column 24 to 38 of the row and column card of matrices 2 through i0. This

number is not loaded onto the computer on a L 0 A D instruction. It is

merely an additional identification for the programmer. To use this option

leave Columns 16-18_ of matrix identification i blank.

28. L 0 A D. This instruction may read into core from the input tape up

to 20 matrices at one execution. If more than 20 matrices must be entered,

L 0 A D instructions may be given at any time in the flow of a problem.

The decimal data for the LOAD is written after the END which de-

fines that particular problem that uses the decimal data. The first card

for every input matrix is a card with the row and column size punched in

Columns ll, 12 and 17, 18 respectively. As in all FORTRAN I-_ routines the

fi-_d point numbers (no decimal point) must be right Justified; that is

if the row-column sizes are single digits they much be punched in Columns

12 _ i L8 respectively. Following the row-column card are the elements

punt ._J._ per card with a field width of l_ between 1 and 7_.

- 17 -



This instruction will also load into a previously defined area if

the size of the matrix to be loaded is the sameas the size of the pre-

viously defined area. Otherwise for every different identifier in the

LOAD instruction, there will De read a set of decimal data, stored in

the following order: matrix identification, row size, column size,

al, lal,2' "'" am,n"
This instruction will handle matrices of size 30 X 30.

29. B R I N G. This routine will read up to 9 matrices from any one of

9 tapes as defined by the tables in the SAVE instruction. The tape number

is punched in Column 18. In the example the matrices which are identified

on tape 9 as F, G, and H are being read into core as F, G, and PH.

Operation is as follows. The tape unit reads forward from its loca-

tion at the time of the instruction until it finds the first required matrix.

It then reads in that matrix and searches forward (without rewinding) for

the next matrix. If a matrix is not found an exit is made from the machine

and error statement n_mber 7 is printed; the program does not continue. Thus

not all matrices on a tape need be brought, but those which are must appear

in the same relative order as they are stored on tape.

This means that to recover the first matrix saved on a tape, an REW

instruction must precede the RING instruction. The operation was pro-

grammed in this manner so that a sequence of matrices all having the same

identification symbol could be successively brought into core.

30. I F. This is the only instruction able to alter the course of the pro-

gram. In the example, if the first element of 14 is greater than or equal

to the first element of F 3 a transfer is made to an instruction which is

labeled HEAD 1 in Column 1 to 6. If the condition does not exis% a transfer

is made to HEAD 2 or if the area comprised of Columns 29-30 is bls_ the

next executed instruction will be the one following the IF instru¢! _ ;_.
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An unconditional transfer can be made by comparing the same matrix.

The headings in Columns 1-6 may be any size character symbol and may

be punched in Columns 1-6 of any data card except decimal data and the _GIN

control card. In case the heading required by an IF statement does not

exist, then a problem exit will be made. Error statement number 4 will be

prlnted.

Another restriction to the IF statement is the number of headings

for each problem. If there are more than 40 headings, error statement number

13 will be printed.

A sample heading appears on the IF statement itself.

31. B E G I N. This instruction marks the beginning of a problem in the

data deck. It precedes the first operation data card of every problem.

BEGIN instructs the translator that Hollerith information follows. If the

I_GIN card should be omitted the data will be read w_thout processing _util

a IEGIN is found or to the end of the data. As an example of the use of

this instruction see Fig. _.

32. E N D. This instruction must directly follow the last operation card

of any problem. It instructs the executive program to return to the first

operation command and begin executing the program data. If the END card

should be omitted the executive program will attempt to read the decimal

data as Hollerith information and return with error statement 2.

Following is a list or program limitations and error statements in-

ternal to ASP. If an ASP error should be encountered, after writing an

error statement transfer is made to the executive program which will begin

by reading again without processing until the operation _GIN is found.

In addition to the ASP error statements the FORTRAN I_ will indicate

such errors as illegal decimal data on the input tape or redundancy on either

input tape or the tapes being used by ASP itself. If Fortran errors are

encountered the program will exit to the monitor.

Of the following limitations number 1 is the only one which the user

of ASP cannot remedy in general. The others can be controlled by taking

advantage of the replacement capability or the BLOT instruction or even

storing matrices on tape in one problem (as defined by BEGIN and END)

-19-



and then developing a new problem following the first (with a second T_.GIN •

and END) which calls these matrices from tape.

l) All matrices, except as specifically exempted in the dictionary_ must

have their larger dimension less than 16. There is no general error return

for using too large a matrix.

2) There is a limit of 120 on the number of matrices of any size which can

be carried in core. If the number is exceeded 3 error statement number 5 is

printed.

3) The program reserves a block of ll,000 words of core storage for the

matrices and the operation instructions. If the problem is too large, error

statement number 6 will be writtan.

- 20 -



ERROR STATEMENTS

l) ERROR RETURN FOR INVERSEIN (X X X X X X X X X X X X),

In the operations which require inverses, RICAT, DECOM, INVRS, if

the matrix is singular the above will be printed with the symbol in paren-

theses identifying the operation ahd the first six characters following

the operation.

e) ERROR IN OPERATION (X X X X X X X X X X X X).

This statement will be written if the executive program does not

recognize the operation as one of the thirty (excluding BEGIN and ENB).

3) ERROR IN IDENTIFICATION (X X X X X X XX X X X X) will be printed out,

with the symbol in parentheses identifying the operation (and the first

six characters following the operation) in which a non-existent matrix

has been requested.

4) ERROR IN IDENTIFICATIOn (HEAD i).

This will be printed if the non-existent heading (HEAD i)

quested in an IF instruction.

iS re-

7) NUMmm OF MATmX Sn_BO_SEXCEEDS 120 A_ (X X X X X X X X X X X X).

This statement is printed if an attempt is made to define more than

120 matrices for any one problem.

6) OVERLAP IN MATRIX DATA AND MATRI_ OPERATION DATA.

This will be printed if the block of ll,000 words for matrix data

and operations is exceeded.
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7) IDENTIFICATIONERRORONTAPEB XX. (MATRIX(XX).

This will be printed if the matrix requested, (namedin the paren-

theses) is not found on tape during the execution of a BRI_3 instruction.

It is the tape analog of the core error 3.

8) DIMENSION ERROR IN (X X X X X X X X X X X X) will be printed, with the

symbol in parentheses identifying the operation (and the first six characters

following the operation) in which the matrices are nonconformable for some

reason, or if th_ operation is storing _ _sult in a previously defined

matrix region which does not agree in size with the resttit; for instance in

TRACE or INVRS if the argument is not a square matrix or in JUXTR if

the number of columns in the two matrices are not equal.

9) ELEMENT TOO LARGE FOR PRINT FORMAT IN TRANBIENT_

The print format in transient has space for only 4 characters to the

left of the decimal point. Therefore all numbers in TR_I should be

greater than -1000 and less than +1000.

10) SPILL IN (X X X X X X X X X X X X). Index register l_ 2, 4, address of

spill location and spill code follow.

This statement alone will indicate an underflow and the computation

will be continued° The above statement along with the following will indi-

cate overflow and the program will exit.

ll) OVERFLOW ERROR IN -- (X X X X X X X X X X X X).

]2) BLOT IS NOT AN ACCEPTABLE OPERATION IN AN IF LOOP.

For a complete sample output see Fig. 5.

13) EXCEEDED RESERVED BLOCK FOR HEADING VECTOR WIT_ X X X X X X .

This statement _s printed if there are more than 40 operations which

have headings in Column 1-6. X X X X X X is the forty-first heading.
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CHAPTER II

THE EXPONENTIAL ROb_INES

i. Description of the Problem: We are interested in an efficient method

to integrate linear differential equations_ and therefore we want to compute

exp(F t)3 F = const, matrix.

2. T_heo___: Let us consider the linear dynamical system

(2.1) = F(t)x + G(t)u(t)

whe re x

vector function, the control function.

Under very mild restrictions on F

unique solutions depending upon the time

is an n-dimensional vector, the state and u(. ) is an m-dimensional

and G, this system will have

t, the initial time to, the

initial state X(to) , and the control function u(.). It is often convenient

to exhibit this dependence explicitly; we shall therefore write a solution

of (2.1) in the form

(2.2) _u(t; X(to), to)"

The notation implies that

@u(to; X(to), t o ) = X(to)

and that

d
d-_ @u (t; X(to)' to): F(t)@u(t; X(to)' to) + G(t)u(t).

It is well known [3] that the solutions of (2.1) can be expressed by

means of the formula
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(2.3)
t

x(t) - @u(t; X(to) , to) = ¢(t, to)X(to) + I ¢(t, _)G(V)u(_)d_
t
O

= X(to) , t and t (whether or not t > to).which is valid for any x ° o

The matrix ¢(t, to) occurring in (2.3) is the transition matrix

of (2.1) and is uniquely determined by the requirements [4]

(2.4) ¢(t, t) = I for all t

and

(2.5) d ¢(t, F(t) ¢(t,d-_ to) : to)"

From these properties and the uniqueness of solutions of (2.1) one can

show at once that

(2.6) ¢-l(t, to) = ¢(to, t) for all t, to;

(2.7) ¢(t3, t2)¢(t2, tl) = ¢(t3, tl) for all tl, t2, t 3.

As an example_ consider

2t - i t - llx2 - 2t 2 -t

whe re

o) =

n

t2

t
2e - e

t 2

22e t - 2e

t 2

t
e - e

t 2

2e t - e
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For a one-dimensional system, the transition function for any linear

system is given by t

f F(T)dr

t
O

(2.8) ¢(t, t ) = e
0

If F is constan% the transition matrix is given by the matrix
tF

exponential e 3 which can be defined by the everywhere convergent power

series

tF _ (tF)i
(2.9) e = _ i' "

i=O

(To show the convergence of the series, observe that for p > 0

IIz i, - i:
i=p i=p

for any norm derived from a vector norm. This shows that the matrix series

tF IltF[l
for e converges in norm whenever the scalar series for e converges;

the latter however is well known to converge uniformly for l[tFll in any

bombarded intcr_al3 and this is equivalent to uniform component convergence of
tF

e .)

This matrix function is of interest in this report primarily because

it is the fundamental matrix of the vector differential equation

(2.10) _ = Fx (F a constant).

That is [Coddington and Levinson 3 1955],

(t - to)F

(2.11) x(t)= e X(to).

This may be proved very easily by termwise differentiation of the

defining series 3 a valid procedure by its uniform convergence.

- 90 -



Someother facts which can be proved about

and Levinson_ 1955]

TFe are [Coddington

A+B A B
(2.12) e = e e

TFT -1
(2.13) e = TeFT -I

F trace F
(2.14) det e = e .

if and only if AB = BA.

for any nonsingular T.

tF
(2.14) shows that e is always nonsingular. We can now para-

tF
phrase (2.11) by saying that the columns of e are n linearly indepen-

dent solutions of (2.10) and thus any solution of (2.10) can be expressed

tF
as a linear combination of the columnvectors of e ,

tF
e is computed in the ETPHI routine_ using the series (2.9). We

are often interested in the forced system

(2.15) : Fx + Gu(t) (F, G constant).

The complete solution to (2.15) can be written as

(t- •)FGu( (2.16) x(t) = etFx(0) + _ e

0

In sampled data systems u(.) is a piecewise constant and we have

t

(2.17) x(t) = etF(0) + I e

0

(t - _)FGd T u(O)

over any sampling interval.

Making the substitution s = t - T_

the simpler form

the integral in (2.17) assumes
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t
[ / eSFdslGu(O).

0

t

The integral _ eSFds = r(t) is computed in the E A T routine.

Its concrete definitio_ can be obtained by term-by-te_n integration of the

tF
defining series for e 3

Fiti+l

(2.1_) r(t) = r. _i+_.'"
i=0

If F -I exists, this may be written as F-l(e tF - I); however F(t) exists

even if F is singular.

tF
3. Computation: For computing e _ the sum of at most the first thirty-

seven terms of its defining series (2.1) is used. Thus we compute

36 t_i

(3.1) etF : Z i--_-"
i=0

.th
The sum (3.1) is actually formed as follows. Let T. be the I te_m of

1

the expansion: To = I_ T i = Ft 3 etc. The sum is accumulated and Ti+ I

is obtained as

tF
T i = T .+i i

i+l

The following motivates why thirty-seven terms are used in (2.1)

and gives a condition necessary for the result to be accurate.

In the II_M 700-7000 computers a little more than eight significant

decimal degits are carried when operating in the single-precision floating

point mode. This imposes limitations on the accuracy of the program. Con-

sider a scalar cosine series. We know that for any real value of the argu-

ment_ the absolute value of the function is one or less. Yet if the argument
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2020

were 20_ the term 20----_is so large that the addition to it of any number

less than one has no effect. That is_ if any term of the series exceeds i08_

we know that no answer will have correct digits to the right of the decimal

point. Thus if we want an answer that is correct to four decimal places_ no

term of the series may exceed 104 . The largest term of the et series is

t t j

Tj where i is the smallest integer such that j+--_< i; therefore T.0 = _J:

where i = [t]_ the greatest integer less than t, For our purposes

_J _,

j, should always be less than 10_j which implies that a conservative bound

i0 I0
for t is i0, since i0--_--_ 2756 < 104"

We can apply this analysis to the matrix case by using norms. Speci-

fically let us define our norm as

i j j i -v

In this norm we have

(3.2) IIABil-_ IIAIIIIBIi and

(3.3) laijl [IAII.

We would like to say now that if itl • IIAII-_ l0 then we are assured

of four decimal place accuracy. (3.2) and (3.3) guarantee that if the condi-

tion is satisfiedj every element of every matrix in the sum will have abso-

lute value less than 1043 which was a necessary condition for four-place

accuracy. In addition it is necessary that we not terminate the result too

soon. The last term taken will be _ each element of which is less
36:

than .27 • l0 -5. The remainder can be majorized by a geometric series whose

sum is l0 -6. This begins to look as if iltAll< l0 is sufficient for

four-place accuracy. This however is incorrect. Clearly since e l0 _- 22000
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then (Ft)k-i
k:

104 , so

We can hope for no more than three place accuracy because we only •

have three decimal places. But the situation is even worse than this. By

the time the largest term is reached the partial sum is larger than 104 ,

from here on to the end of the summation, digits less than about .5 " 10-3

will be dropped and digits of this size can occur out to the term k = 33.

Thus for about 25 terms we are losing digits averaging 2.5 " 10 -4

for a total of about .006. Thus for positive eigenvalues the error is

bounded by about .006. For negative eigenvalues the problem of large accumu-

lations does not arise_ here we only have the differences of numbers about

3000 which means that we should get four decimal place accuracy.

This analysis indicates that the restrictions w6 apply to ilAtll will

suffice to give us four decimal place accuracy with (algebraically) small

numbers and more than two decimal places (at least six significant figures),

with large numbers.

The specified norm was chosen because, being sums of absolute values_

it is simple and quick to compute and because the minimization gives a fairly

small norm. This is of course desirable so as to maximize the allowable

step size. We could not, however, use IIAII= max laij I because in this norm

itisnotneoessarilytruethat li li JiA[lHBII-

E A T is computed in much the same way except that the initial term

of the series is tl_ not I.

The arguments concerning the maximum value of t apply here also,

with some modification. If k' is the largest term in the exponential_

will be the largest term in F. Again this must be less than

(3.4) t =< 104k'

flaILk-l"

This is mechanized as follows: First T is halved until

T < i0.001.

T = _k410-_--if Theni0 .. if ll llis greater than 8; we can checkthat

< (i0.O01) it is, we accept • and proceed._^4 If II IIis less than

8 and greater than 6 we check that _ __ _7'. If it is, we accept • and

8_
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proceed. This continues until, if o < IIF_II< 2, T must be less than 104;

and is halved until it is less than l04. (See Figure 2 where

C1 = i04, C2 = _2' , C3 = 1049'62, C4 = _,8v and C5 = (i_)10410'.

TF
In order to compute ¢ = e , then for a T which is too large, we

select • = _ such that I[Fvll< 10.001. To compute ¢ and

I_ = mf.etFdt k_we have additional restrictions as described above. In any case

0. T
we arrlve at a v = m which will give us the accuracy described above. We

2k (e,rF)2k"_F TF
then square e k times_ obtaining = e by (2.12). The proce-

dure with r is similar. It follows from the fact that

T

f2_etFdt = f etFdt + exF / etFdt.

0 0 0

This process also is iterated k times to produce

T

r = / etFdt.

0

The procedures have their failings of course, the multiplications

and additions required to bring • up to T introduce errors. No attempt

is made to control this in the machine; however if a print is requested,

the v used is printed and will indicate how many squarings were required.

An option was found to be necessary. If we wish to compute the

riccati solution over a given interval we must compute the fundamental matrix

of the corresponding euler-lagrange equations over a submultiple of the

interval (t - to). This is signaled by putting an extra matrix in the

calling sequence (only in E T P H I, not in E A T). When we exit from
t - to

E T P H I the subinterval length • = _21"N7--- where • will be the maximum
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i0.001

value to satisfy the condition that • _ -_- will be in the extra matrix

and the exponential with that value of • will be in PH. At first it

seems that this could be handled by the ordinary process of reducing

for the series computation and squaring up to bhe correct value. This is

a poor procedure however, because the euler-lagrange equations have both

stable and unstable roots. Although the riccati may converg% the funda-

mental matrix may overflow if • is too large.

For illustrations of most of these processes_ s e Chapter 13 Fig.

5-18.

The summation process terminates at the kth term if every element
th

of Tk, the k term of the exponential sum is O. By virtue of the float-

ing point spill routine a zero matrix can occur if every element is less

than approximately lO -40.

Some experiments were made in this subroutine with what we have

called pseudo double precision. This involved two changes: i) All scalar

products in matrix multiplication are accumulated in double precision_

.= Za b
rounded and stored in single precision. For instanc% cij k=l ik kj

products aijbkj would be computed as the single precision product of

single precision numbers_ the partial sums T a..b_., however_ would be
k=l. iJ KJ

kept as the double precision sum of single precision numbers. After the

double precision c.. was obtained it was rounded to obtain the single
iJ

precision value for storage. 2) These single precision terms are accumu-

lated as above in double precision when the exponential is eompleted_ the

double precision matrix is ro.unded to single precision for storage. Theoret

cally of course, this procedure is meaningless, for instance if we add 1093

10 -2, and -109 , in that order, in single precision we get zero. Using

pseudo double precision we get 10 -2 . But the immediate objection is that

the errors in any single precision representation of 109 are larger than

10 -2"
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The results of a few experiments tend to corroborate these

ideas. Most of the results achieved with the double precision code

showed markedly greater significance, perhaps one more decimal place.

However 3 in the most complicated check 3 the magnitude of one error

actually increased. Tentatively one might say that when working with

input numbers, this procedure is very helpful, but after a long sequence

of computations, the mechanics of truncation create a situation where

ordinary floating point is essentially the optimal computation procedure.

4. Checks. (A) The exponential and integral exponential were computed

for the 7 × 7 matrix diag (-10, -4, -1, 0, l, 4, 10), with T = 1.

The results appear in Fig. 3-A and 4-A, the correct answers in Fig. 3-B

and 4-B. Because the matrix is diagonal 3 the error analysis applied

exactly and the answers show this very well. In the submatrix (-10)3 where

we are not only at the limit of the acceptable range but are taking

differences, we barely have four place accuracy and no correct signifi-

cant figures. Where differences are not being taken as in (10) the answer

is correct to seven significant figures.

One phenonemon that occurs repeatedly in series computation is

that in the exponential of the positive eigenvalues, the computed value

will be invariably less than the correct value because the error is caused

by truncation of positive terms. With the negative eigenvalues the error

does not display this characteristic.

The exponential of this matrix for T = 1 was also computed using

the pseudo double precision code. This gave the result

F
e = diag [4.42_78_E-5, 1.831_656E-2, 3.6787944E-I,

9.9999999E-I, 2.7182817, 5.4598150E2,

2.o254_4E4.]
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(B) The exponential and integral exponential for a 15 X 15 Jordan

block with eigenvalue zero were computed with T = .1, 1., and 10.

The results were very good, probably because the series truncates.

The answers were correct to more than seven decimal places. (See Fig.

5-1o.)

(C) The exponential of the 7 x 7 skew-symmetric matrix.

0 i 0 0 0 0 0

-i 0 I 0 0 0 0

0 -i 0 i 0 0 0

0 0 -i 0 i 0 0

0 0 0 -i 0 I 0

0 0 0 0 -i 0 i

0 0 0 0 0 -i 0

was computed for T = i. This matrix should have been orthogonal. Multi-

plying by its transpose we obtained the identity matrix with errors of

less than 2.10 -7. (See Fig. ll. )

Using the double precision code we obtained an identity matrix

with errors of 2.10 -8.

(D) Using this orthogonal matrix we computed the exponential and inte-

gral exponential of 0A0 -1 where A was the matrix

diag (-i0, -4, -i, 0, i, 4, i0) used in Check (A) and 0 was the

orthogonal matrix obtained in (C). The issue was confused slightly by

the fact that 0' was not quite equal to 0 -I, but the accuracy was

not greatly reduced. Except in the largest element, where the error was

three in the seventh significant figure, the worst error was 2._ in the

fourth decimal place. (See Fig. 12. )
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The exponential was computed using the double precision code

and generally reduced the errors significantly, but one element, which

should have been zero, actually increased in magnitude.
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CHAPTER III

THE TRANSIENT PROGRAM

i. Statement of the Problem. This is a program to display solutions of

a linear differential equation.

2. Theory. Having obtained a feedback control law for a systemj we usually

like to have some means of observing the output. We can do this most

readily by computing the response of the system to unit initial conditions

on the state variables.

If we have a differential system

(2.1)

_ = Fx + Gu(t)

y(t) = Hx(t)

with control law

u(t)= - _(t)

then we can rewrite the system as

(2.2)

= (F - OK)x

y(t)= _(t)

with solution

(F - aK)x(t + _) = e x(t).

On the other hand 3 we may have a system which is monitored at in-

tervals TI; while the control is changed only at sampling intervals T2

(T2 is some positive integral multiple of 71 .)
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Furthermore the system mayhave a constant forcing term.

3. Computation. The Transient Routine mechanizes a set of equations which

encompass these situations and provide 3 along with a time history of the

solution 3 a rather detailed description of the process (see Chapter 13 Fig.

16). For instance, the times when control is computed are marked with an

asterisk. The equations used are:

x(t + 71) = Px(t) + Gu(t)

u(t) = Jr - Kx(t ° + i72) (i+ 1)72.i_2 __ t - to -

Thus P is the transition matrix 3 G is the integral of Green's function_

JR represents a forcing function and Kx is the feedback term. The state

71 cu_l_ b_libvector is monitored at intervals and the control is _u_ u_=

sampling interval 7 2 .

In certain applications the state vectors are not the observables

and in such cases it is desirable to monitor the actual system output.

Furthermore at most seven state variables can be printed. So instead of

printing the state variables we print

wnere H is a constant matrix having at most seven rows.

4. Checks. The Transient Routine is 3 mathematically, an extremely simple

program; but the logic is somewhat complicated. Most of the complications

of the routine are involved in setting up the printout with the correct

number of state variables 3 control variables3 etc. This makes it impossible

to design a single run to check every possibility. Repeated use has given

us considerable confidence in its freednm from error. For a sample run see

Fig. 163 Chapter I.
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TRNSI

Select matrices
J,K,R,X,PH,G,H,T

I _21_lq=

Construct

Print Format

To Handle

Variable Vector
Sizes

I 'u=V-K*Xj:

t

Y--H_x,_ _°_

! 0 _q'

Yes

J
I * _ tint

I
PH*X + G*u -_X

Fig. I

- 122 -



CHAPTERIV

THEGENERALIZEDINVEF_EPROGRAM

1. Description of the Problem. Many problems in optimization require com-

putations in linear algebra which go beyond finding an inverse. For instanc%

determination of rank 3 least-squares solutions of linear equations, etc.

These problems are readily handled via the concept of a pseudo-inverse (or

generalized inverse) of a matrix.

2. Theory. In matrix calculus there is a frequently recurring difficulty

due to the fact that the inverse of a matrix does not always exist. To

prove the existence of the inverse of a given matrix is often cumbersome and

difficult. Moreover 3 in many cases solutions of a set of linear equations

exist even when the inverse of the matrix defining these equations does not.

To obviate some of these difficulties, it has been found convenient

to make use of the notion of a so-called pseudo-inverse of a matrix.

Roughly speaking, a pseudo-inverse must possess two properties to be useful:

(i) it must always exist; (ii) when used in place of the inverse (which may

not exist), it should give sensible answers to q_stions such as solutions

of equations.

We shall present here a brief discussion of the properties of pseudo-

inverses_ in particular the "generalized" inverse of Penrose. Further de-

tails may be found in Reference 1.
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DEFINITION. Let A denote the Moore-Penrose inverse of

a matrix that satisfies the following axioms:

(i) m_A = A,

(ii) AqA = A_,

(iii)(A_A)' = Aq,

(iv)(_), : _.

It can be shown that

(2.5) and (2.8) below).

A. This

A _ always exists and is unique (see Theorems

The axioms are readily seen to imply that

(2.1) A_ = A,

(2.2) A_ = A-1 if A -i exists,

(2.3) A'_ = A_'.

let

It is not generally true that (AB) _ = B_A _.

Furthermore A _ is a discontinuous function of

A $ = A -I =

A ___

1 -a

i -a i -a

the n

for a / i,

for a = 1.

A. For instance,

but

It is not true in any sense that lim A_(a) = A_(1).
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(2.4) LEMMA. A(A'QA)_A'QA= A for any nonsingular symmetric

matrix Q.

Proo_____f:Let C = A(A'QA)_A'QA - A. Then C'QC = 0 3 by use of

axiom (i). This implies C = 0.

(2.5) THEOREM. A _ exists.

Proo____f: (a) If A= diag (dl, ..., dn) , then let

a - dl/0ii = dil

a _ = 0 othe rwlse.
ij

(b) If A = A' is symmetric, we know that A = UA U', U

orthogonai, A diagonal. Then A _ = Li\_U '.

(c) If A is arbitrary, we let

(2.6) A _ = (A'A)_A '

or

(2.7) A _ = A,(AA,) _.

Either of these satisfy axiom (i) by use of Lemma (2.4) and axioms

(ii), (iii) and (iv) by use of part (b) of this theorem.

(2.8) THEOREM. A _ is unique_.

Proof : Let X and Y be Penrose inverses of A. Then:

X = XAX = A'X'X = A'Y'A'Y'X

= A'Y' XAX = A'Y'X = YAX = YX'A'

= YAYX'A' = YY'A'X'A' = YY'A' = YAY = Y. Q.E.D.
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In particular, equations (2.6) and (2..7) define the samematrix

That hypotheses (i) - (iv) are independent (i.e., necessary for

uniqueness), will be shown later.

The following theorem and its corollaries give, in increasingly

general form, the main properties of the Penrose inverse. First, however,
we need an elementary fact :

A_.

(2.9) ORTHOGONAL PROJECTION LEMMA. Given a normed vector space V,

a constant vector b e V3 . and a linear ma2 A: V -_ V. The___n

iiAxO - bll = min flAx - bll

xE V

is equivalent to

(Ax, Ax ° - b) = 0 for all x in V.

Proo____f:Assume (Ax, Ax ° - b) = 0 for all x in V. We want to

prove that flax° - bll __ flay- bll for y in V. Any y in V can be re-

presented as

O
y=x +z, zeV.

Therefore

I1._- bll2 = tl-'_° - b + ._ll2 = I1._° - bit2 + 2(.,_, ,_o - b) + II._li2.

Since (Az, Ax ° - b) is zero by hypothesis and I1_112-_ O, the desired

conclusion follows.

Now assume that flAx° - bll __ flay - bll for all y in V and show

that (Ax, Ax ° - b) = 0 for all x in V. Suppose there is an x such

that (Ax 3 Ax ° - b) = _ / 0. Let
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Then

llAv+ Ax° _ bll2 - flax° - bll2

= IIAvll2 + 2(Av, Ax ° - b) = _
!!_!!2 !!_,.2 I!_1.2

<0.

This contradiction proves the lemma.

(2.10) THEOREM (Penrose): Consider the equation

xO = A_b a___ x / xO. Then either

_AD( -- b. Let

(_)

(b)

I1_ - bll > I1_° - bll; or

I1_ - _11--11_° - bll and Ilxll > IIx°ll-

(c)

Furthermore the minimum value of 112- bll i__

t1_° _ bl12= Ilbll2 - 112°112= IIblI__AA_.

o
In words, x

the least square error.

Proof_

is the smallest (in the usual norm) vector which gives

(a) We must show first that (Ax, Ax° - b) = 0. In fact,

(Ax# Ax° - b) = x'A'AA_b - x'A'b_

and by axiom (iv)

(Ax, Ax ° - b) = x'A'A _'A'b - x'A'b,
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which is seen to be zero by equation (2.3) and axiom (i).

By Lemma (2..9) this proves

II_- bll-_II_° - bll.

0
(b) Suppose IIAx - bll : I!Ax° - bll, and let us write x = x + v,

where v _ 0. Then flax - bll2 - flAx° - bll2 = 2(Ax ° - b, Av) + IIAvll2 = 0,

but it has been shown above that (Ax ° - b, Av) = 0. Therefore Av = 0 so

that v is in the kernel of A.

O iIIx°l12= Ilx - (x- x )112=Ilxll2 + IIx x°ll2

= Ilxll2 + Ilvll2 - ev'A_b- _,v

= Ilxl!2 -IIv!!2 - 2b,A_'v.

- 2(x, x- x O)

But, by axioms (ii) and (iii)

A _' m A_'A'A_'v = A_'A_av = O.

Thus

Ilxll2 = I1_°112b llvll2 > IIx°tl2

which proves part (b) of the theorem.

(c) By direct computation, we have

IIA_° - bll2= II(T - A#)bll2 = I1"oll2
(T - AA#),(-r - AA#)"

But (I - AA#) ' = I - (AA#) ' = I - AA # by axiom (iv). Moreover, (I - AA #)

is idempotent by virtue of axiom (i). Hence
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jj_o_ bji2= ljbli2
I-AA_

_-Ijbll2 -l)_°jl2 Q.E.D.

This theorem could have been stated as a problem in minimizing the

quadratic form flax - bll2. Indeed, we can extend the theorem as follows:

(2.11) COROLLARY. Consider flax -blip2, where P is symmetric,

non-negative definite. Let x °= (A'PA)_A'Pb. Again we have alternatives

(a)o__r(b)ofT_orem(i.10),_hilethem_±m_ valueoZ llm-bi1_

Jl_° - bJi_= l}bJl2
p.pA(A'PA) _A'p"

Proo___f: Since P is non-negative definite symmetric there exists a

symmetric matrix Q = p1/2 such that P = Q2 = (ply) 2. This allows us to

write the quadratic form as IIP±/2Ax'J-̂ P±/Wbll2.'/^ Hence in view of the unique-

ness theorem (2.9) all we have to show is that

(A'P)_A'p1/2 = (pl/2A)_.

This is done by verifying directly that the left-hand side satisfies the

axioms (i) - (iv). Q.E.D.

Theorem (2.10) and its corollary have the following simple geometric

interpretation: Ax ° is the orthogonal projection (relative to P) of b

o
x itself is the shortest vector whose image under Aon the range of A.

is this projection.

It is worth noting also the following: If the minimization problem

is solved formally by equating derivatives to zero, the resulting formulae

are rigorously correct if inverses (which may not exist) are replaced by the

Penrose inverses.

A further extension of these results can be made to sums of quadratic

forms.
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m

(2.12) COROLLARY. Consider Q(x)= =zIIHAi x- bill_ Letm m i i"

xO = ( 7 AiPiAi)_( 7.A_Pibi) and x / xO. Then either
i=l i=l "---

(a) Q(x°) <Q(x) or

(b) Q(x°)= Q(x) _ llx°ll< II_II-

Moreover,

m

= liA xOlj 

Through this proof we assume that the Ai and Pi are n × n

matrices and the bi are n vectors• There is no restriction since we

may assume the addition of zero rows and columns where necessary.

Proo_____f,This may be established directly by defining the mn dimen-

sional vector b, the mn × n matrix A, and the mn x mn matrix P,

b= . , A= • 3 P=

b A
m mi

l

P1

0 P
m

B

The the minimization of Q(x) is the same as the minimization of flAx - blip2,

so that (2.12) follows from (2.11).

(2.13) COROLLARY. Consider the quadratic form flAx- blip. Let

- x° = [(I - A_A) [(I - A_R(I - A_A)]_(I - A_A)R - I}(A'PA)_A'Pb
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a__ndx _ x°. Then either

(a)

(b)

flax- blip> IIA_° - blipor

IIA_- blip= IIA_° - blipannaII_IIR > llx°llR.

The minimum value of the form is, 9f cours% still

(c) llA_°_ bll_
P - PA(A,PA)_A,p"

Proof: First we show that the most general vector which will give

the minimum value of ]lAx - bllP is

(##)
1

x = (A'PA)_A'Pb + (I -A_A)v

i
where v is any vector. That x gives the minimum value follows from

Corollary (2.11) and the fact that (axiom (i)) A(I - A_A) = 0. To show

that the form (# # ) encompasses all vectors which minimize flax- bllP it

is sufficient to note: (i) All vectors y such that x° + y minimizes

JlAx- bllP are in the kernel of A; this was shown in the proof of Theorem

2.10. (ii) All vectors x in the kernel of A can be represented as

(I - ASA)x3 a fortiori as (I - A_A)v, where v is an arbitrary vector.

These observations simplify the original problem to minimization of

II(A'PA)_A'Pb + (I - ASA)VlIR with respect to v, which can be done by

Corollary (1.11) to give the desired result.

mxn

Then

(2.14) _. (Generalization of Lemma (2.4)). Let B(t)

matrix whose elements are continuous in t in the interval

T T

B(t) - B(t)[f B'(x)B(T)dT] _ f B'(X)B(T)dx = 0

0 0
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for all t in [% T].

Preo____£: o(t)

(i), we find that

Hence

denote the matrix difference above.

T

D'(t)D(t)dt = O.

0

T

/ IIo(t)xll2dt : 0

0

Using axiom

for all fixed x, which (remembering that D(t) is continuous in t) im-

plies that D(t) = % 0 -_ t -_ T.

B(t) may of course have piecewise constant elements and the lemma

can be applied to finite sums. Note that the matrices in such a sequence

need not have a constant number of rows.

An examination of (2.10) shows that in order to obtain the minimum

error property only axioms (i) and (iv) are required. (ii) and (iii) then

o
assure that the norm of x is minimal; in control theory where the norm

o
of x represents the required control energyj this is a desirable property.

In general 3 if one of the axioms is dropped, the pseudo-inverse will not be

unique. For instanc% let

the n

A [ol]
0 1

0111
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satisfies (i), (ii), and (iii), but not (iv).

_: i/2

satisfies (i), (ii), and (iv) but not (iii),

i/ -i]

1

A3=

2 1/2

satisfies (i), (iii), and (iv) but not (ii), and

Z _____

satisfies (ii), (iii), and (iv) but not (i), whereas

A_ = ll/2 0

is the Penrose inverse.
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The following corollary to Theorem (2.10) gives an alternative

characterization of the Penrose inverse.

where
(2.15) Let A% / A $ be any matrix satisfying (i).

2!

IIMII is defined as (trace M'M)_ = ( _. mij)2.
i,j

Then IIA%II> IIA_II

Proof: To prove this, it suffices to note that the matrix equation

AXA = A

may be interpreted as a vector equation in the elements of the matrix X.

Since pseudo-inverses always exist_ this equation always has a solution.

By Theorem (2.10), A _ is the "smallest" solution in the sense of the norm

defined above.

A further characterization is that given by Greville [4]. Here A _

is defined as the unique matrix satisfying (i) and having its row space and

column space the same as A'.

This characterization may be established by noting that A _ and A'

have the same kernel.

If A'x = O, then

A_x A_AA_ x A_A _'= = A'x = 0,

and if A_x = 0, then

'A'x = A' A'x = A'AA* = 0. Q.E.D.

One of the most fruitful characterizations of the pseudo-inverse

arises from a consideration of its mapping properties. Let A map the

space V into the space W. Denote the range of A by R(A), the kernel

of A by K(A), the orthogonal ccmplement of K(A) by CK(A), and the

orthogonal complement of R(A) by CR(A). Then the requirement that the
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error IIAA_b - bll is minimum is equivalent to saying that A _ is the

inverse of A on R(A) and maps CR(A) into K(A). Clearly then if

we want A_b to be of minimum length, we must have that A _ maps

CR(A) into zero•

We obtain the following two formulae which are equivalent to the

four axioms:

i a) A_AA ' = A'

ii b) AA_A_' = A_'

Because we have concentrated so much on the lack of uniqueness of

matrices which give the solution of the minimum error problem, we should

•point out that there is only one such matrix if either A'A or AA' is

nonsingular.

We conclude with two formulae for the pseudo-inverse,

(2.16) PROPOSITION.

A s = A' (AA')TA(A'A)TA '.

Let B% be any matrix satisfying (i), the___n

This is easily proved using ia) and iia).

The following is an iterative formula; we wish to find

a is a vector. Unfortunately we must distinguish two cases.

(rar_ [A a] > rank A, (I- AA _) a / O).

[A a] _ where

When a 4 R(A),

(2.17) [A a] _ :

_'(: - AA#))
- -

When (I - AA_)a = 0
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[A a]
I N

1 + a'A t Aa

a,A _ 'A _

i + a'A_'A_a

We must assume that a is a vector only in the sense that the number

of separate cases appears to be the number of possible ranks of (I - AA$)a.

If minimum error is the only desideratum and minumum length of the

1
fitting vector can be ignored, (2.17) can always be used with

a'(I - AA )a
set equal to zero when the denominator is zero.

3. Computatio_n: Several proposals for computing A_ have been made in the

literature. These algorithms are often very inefficient from the point of view

of numerical computation (though they might be useful in getting exact answers

in simple cases). For instance, in establishing the existence of the Penrose

inverse for a symmetric matrix S we used the existence of a diagonalizing

transformation, but this involved finding all the eigenvales of

is a more difficult problem mathematically then computation of

over, the algorithms proposed so far do not simplify when A -I

as that given here does.

A description and proof of the algorithm follow.

S which

S _ More
. m

exists_ where-

Phase i. Compute AA' or A'A, whichever has smaller dimension.

the resultant n X n_ symmetricj nonnegative definite matrix B. It will

suffice to compute By because then one can write

Call

AS = (A,A)$A, or



Phase 2. Compute a nonsingular matrix TI such that TIBT _ = E

is a diagonal matrix with elements zero or one.

The matrix TI is computed iteratively in at most n steps by a

modification of the gaussian elimination procedure.

As a numerical example, we shall carry through the reduction of

the matrix.

B

2 1 : -2

1 29 -8 6

-2 .-8 4 0

-2 6 0 4

(o) _(o)= B(1)= B.
Let T1 = I and

Step i. Select the largest diagonal element (LDE) of B(1)

divide by its square root the corresponding row and col_n of B(1)

(o)
T]_ •

In the example, the LDE of

and

and

B(I) is 29 and occurs in the 2nd row

and column. Thus

B(2)=

2 1/._ -2 -2

1

-2 -8/5 4 0

o 4

mm

I 0 0 0

0 1/_ 0 0

0 0 l 0

0 0 0 i
m

Having completed Step l: we obta!

(3.1) Tj.(1)_] (I)' = B(2).
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Ste_ 2. Let kI be the row and column in which the LDE of B(I)

occurred. Multiply the kl-th row of B(2) resp. TI(1) by the ikl-th

element of B(2) and substract the resulting row vector from the i-th row

of B(2) resp. Tl(1). Do this for all i _ k1. Then set all the elements

b!2)J equal to zero, except b (2) = 1.
iI kI kI

-- m

0 i 0 0

-42/25 0 36/25 48125

-56/25 0 48/25 64/25

, Tl(2)=

l -1/25 o

o 1/5 o

0 8/25

o -6/25 o

1

O.

0

1

We have now the identity

(3.2) T (2)BT (2)_ = B (3)
1 1

Step 3. Apply Step 1 to B"3'(_ disregarding in search for the largest

diagonal element the row kI which occurred in Steps 1-2. Now k2 = 4.

The result is:

]3(4) =

49/25 0 -42/25 -7/5

0 1 0 0

-_2/25 o 36/m 6/5

- 7/5 o 6/5 1

l -z/25 o

o #5 o

o 8/2.5 1 o

0 -3/20 5/8

0

0 .

Step 4. Apply Step 2 to B(4). Then
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0 0 0

0 1 0

0 0 0

0 0 0

m

0

0

0

1

m

-_/4 o -7/8

0 i/5 0 0

o _/2 1 -3/4

o -3/20 0 9/8

which completes the reduction in the example considered.

At each state of the iteration we have the identity

(_), (_+i)
(O_)BTI = B G = i, 2q < 2n.(3.3) _i ' "'" -

If the matrix

(.3.4) B(2q+ i)= E

for the first time 3 then

(3.9) rank B = a.

In the example, q = 2.

This algorithm is a slight modification of one given by Ref. [3].

Phase 3A.

and hence

(3.6)

If B (2q + i) = I = unit matrix, then

-1 -1

B = [Tl(2q)] [Tl(2q)']

B+ : B'i: _i(2q)'_i(2q)"

B is invertible

Phase 3B. Suppose B(2q + i) : E _ I.

tion (orthogonal) matrix P such that

Then there exists a permuta-
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E = PTBT'P' = PEP' =

m

I 0
q

0 0

m

That is, the first q elements on the diagonal are one and all other ele-

ments are zero. Note that p-1 = p,.

Further we have

(3.7) = PTP'PBP'I_'P',

so that _ = PTP' is the matrix given by the Andree algorithm for the

matrix B = PBP'.

The method of construction of

assures us that _ has the form

T given above in the Andree algorithm

0

n-q

where _ is a nonsingular q x q matrix.

Partitioning _ in the same manner we write

m

where Bll is nons ingular.

m

B=

m

m

Bi2
m m
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Substituting (3.8-9) into the identity _' = _3 we obtain the

re lat ions

(_lO)

VBII _' = Iq,

_ll _' + _ :0

(_ll + B_)w' + WBm + B22 : 0.

These equalities imply that

o°IIIo°iiW Io
and

(_) c :

where D = (Iq + _'W)BII(Iq + _'_)-

Because the rank of the sum of two nonnegative definite, symmetric

matrices cannot be less than the greater of two ranks, (Iq + _'_) and

D are of rank q, hence nonsingular.

Then

(3.13) B_=

o o o
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as can be verified by checking the four axioms of Penrose.

And the fact that

(3.14) B _ = p,_p

follows easily.

The steps followed in the machine are simplified in that the only

matrices required are _ and _. Moreover the permutation matrix P

is not actually computed.

_. Let U be the following matrix

If i / j,

/- tij if e.. =_ 0i ll

tuij = 0 if eli = 1

U° .

ll
"I 0 if

1 if

eli = 0

e. ° _ Io

Ii

In the notation used previously U can be written as

J 1U = P'_P = P' P.

- 0

In the example
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U

o l_ o -7/8

0 i 0 0

o -1/2 o 3/4

0 0 0 i

Step 2. Compute

U'BU = C.

The result is

0 0 0 0

0 35.125 0 -4.5625

0 0 0 0

0 -4.5625 0 13.90625

which can be written as P'CP.

After deleting the rows and columns corresponding to eii = 0 we

have the same nonsingular q × q matrix which we have previously called

D.

Step 3, Compute D -I by means of the Aud_e algorithm. As in

Phase 3A, we have

D-I = T_T 2.

Step 4. Compute
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0jU ).

0

This completes Phase 3B.

Phase 4. We now compute A _ using either A _ = B_A ' or A _ = A'B _.

A flow chart appears as Fig. l; if a plus sign is used in column 16

of the P S E U 0 instruction, implying that the argument matrix is already

nonnegative definite, then the symmetrization process is not executed.

Remark: This algorithm has two very important features:

a) it takes much less time if A is invertible.

b) A _ is a discontinuous function of A because it depends

critically on the rank of A. The Andr_e algorithm and a norm error control

newly developed allow to some extent control of the "apparent" rank of A.

This is done as follows.

The algorithm reduction is carried out until the largest diagonal

element of a non-reduced row is less than _, where e is the product of

the largest diagonal element and a number P1 of PIZER. (P1 is lO -2 unless

the PIZER instruction is used. ) Then

Pi = _ ( ri I' -BII IIB BB- B IIPz
HBII fIBril

is computed and the test 0i _ Oi_ 1 is made where P2 is the second number

in the PIZER instruction and i = r. is the rank at the ith iteration. If
l

Pi _ Oi-1 and ri < n, the reduction is carried out on another unreduced

row; this process continues until the above @ condition is met on r = n
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'or a diagonal element is negative or zero. With sufficient knowledge of

the matrix B one can choose P1 so that the p computations are kept

at a minimumand one can choose P2 to control the r_uk.

4. Numerical Checks: The exact computation of the generalized inverse

involves a very large amount of work.

A) The generalized inverse of the matrix of the numerical example of Sect. 3

has been computed by hand, using the procedure described in Sect, 3- The re-

sult is as follows:

10B _ =

m

O. 5509 7061 -0. OllO 26O88 -0. 4691 1021 -0. 6328 3101

-0. OliO 26O88 O. 297 3 7046 -0. 0755 12056 O. 0975 642 32

-0. 4691 1021 -0. 0755 12056 O. 42 % 69 34 O. 5145 5108

-0.6 328 3101 O. 0975 642 32 O. 5145 5108 O. 7511 109 3
u

m

The machine-computed value of the generalized inverse is:

10B $ =

m

m

O° 5509 7060 -0.0110 26087 -0.4691 1020 -0.6328 3102

-0.0110 26087 O. 297D 7044 -0.0755 12051 O. 0975 64228

-0.4691 1020 -0.0755 12051 0.42_ 6933 0-5145 5110

-0.6328 3102 0.0975 64228 0.514r 5110 0.7511 1099
m

This computation used iteration.

Bi _ exact generalized inverse of the matrix
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4

A -- -2

2

was computed in [4].

-1

5

13

His result is

-3

-1

-9

m

2

-3

-5

A_ = 1

To l0 decimal places,

608 -362 130

-197 212 242

-431 204 -250

324 -255 -97

m

A_ is given by

102A_ =

9.9029 69678

-3. 0790 87215

-6.7354 80_90

5.0640 85296

The rank of A is 2 interated.

floating decimal digits):

N

9.9029 695

-3.0790 870

-6.7364 801

5.0640 824

-5.6980 181_

3._35 3_80

3.1884 96405

-3.6730 22820

2.0318 84964

3.7824 p010

-3.9074 71085

-o.89o9 o34o7

The machine-computed result is (carrying 8

-5.698O _l

3. 3139 393

3.1884 964

-3.6730 227
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_he error amounts to only about 2-5 parts of the last decimandigit carried

by the machine. This is of course exceptionally good. As a check, one

finds that the machine result satisfies (i) to about 1 part in l07 and (li)

to better than 5Part in l08.

C) In addition to this we wanted a check that would show the differences

between P S E U O, P S E U 0 +, and I NV R S. This required a positive

definite symmetric matrix. For this purpose we selected a matrix introduced

by H. Rutlshauer and appearing in Newman and Todd, "Evaluation of Matrix

Inversion Program"s, SIAM JOURNAL December 19_8. This is denoted by A12 = BB'

in the reference, where

(-i) j i j

t •bij = 0 i < J

A_ is B'B because B2 = I. The conditioning number P(A12)= max lhl

i,j1 jl
is asymptotic to e2"77n. Hence assuming the asymptotic formula to be correct

for n so small, we choose n = 7 since this gave P(A12) _ l0 8, which is

about the limit that we could expect to handle. We print out A12 in Fig. 2,

= B__B in Fig. 33 the difference between _12 and 2 as obtained by

P S E U O+ in Fig. 4, and the difference between _ and _ as obtained

by P S E U 0 in Fig. 5.
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CHAPTER V

THE DECOMPOSITION ROUTINE

1. Statement of the Problem: It is frequently necessary to determine the

rank of a matrix_ factor it into two components 3 etc. This subroutine does

such steps, without the necessity of writing a separate program around

PSEUO.

2. The__: In considering systems of the form

+u(t)

where u(. ) is a random process with a singular covariance matrix W_ it

is desirable to transform to a representation

= + Gv(t)

where v(. ) has a nonsingular covariance matrix. If we obtain a factoriza-

tion W = G'G where the number of columns of G is the rank of W, then

the new representation is obtained with v having a covariance matrix equal

to the identity matrix.

Another application occurs in the process of investigating the equa-

tions associated with a given transfer function. It becomes evident that

one of the fundamental operations is that of decomposing a matrix of rank

r into the sum of r Kronecker products of vectors. That is# if A is

r we would like to find the column vectorsan m by n matrix of rank

[hi} and [gi] such that

r

A = 7 hig'.
i--1

h.

l

tion is available in the machine.

This can also be written as A = HG where the ith column of H is

and the ith ' It is in this form that the decomposi-row of G is gi"

- .1}4.



As described in Chapter I, the decomposition program at present gives

a decomposition only of nonnegative definite symmetric matrices. The output

provides matrices S and E where S is non-singular and E has r columns.

Then if the input matrix is B, we have B = SEE'S'.

But given this we can generate a decomposition for any matrix A. First

form AA' or A'A, whichever is smaller. We shall assume here that we have

AA'. This being nonnegative definite and symmetric, we can use the D E C OM

instruction to obtain S and E. Further we can use the P S E U 0 instruction

to obtain A _. Then A(A_A) ' = AA_A by axiom (i). However, A(A_A) ' = AA'A _'=

SEE'S'#'. Therefore if we take H = SE and G = (A_SE) ' we have the required

factorization. If we had used A'A to enter D E C 0 M, then the selection

H = A_'SE G = E'S' would be used.

Notice that there can be no inconsistency about the rank of A as deter-

mined by D E C 0 M provided that if A'A and AA' have the same dimension

then AA' is used. The reason for this is that precisely the same operations

are performed in both routines. This will be made clearer in Section 3.

3. Com____utation. Let B = AA' or A'A. This program uses Phase 2 of the

P S E U 0 computation. There a non-singular matrix T is computed such that

TBT' = F where F is a diagonal matrix with elements 0 or 1. As indicated

in Chapter V 3 the diagonal elements of B in phase 2 are compared with a

...._ E and the algorithm reduction ceases when Bii < E or rank r of

B is maximal. If the code (column 18 is blank) in the D E C 0 M operation

indicates that there is to be no iteration to compute the best decomposition

("best" as defined below) 3 _ will be the product of Pl of P I Z E R and

the maximum diagonal element, and the program will exit with the resultant

T and F. If colum 18 is a l, c will be the product of the maximum Bii

and Pl (of the P I Z E R instruction). After B has been reduced as described

above
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PJ = IJ(Tj-IFj)(Tj-IFj )' - BliP2rj

is computed and if this is not the first iteration 3 is compared against

P j-l"

If Pj -_Pj_13 computation ceases and the (j-1)st T and F are

the result. If Pj < Pj-I another row of B is reduced and the compari-

son made. This process will continue until the pivotal element is non-

positive or rank is maximal• An explanation of Pl and P2 is in order

at this point. Pl and P2 are stored as 10 -2 and 13 but both elements

can be changed by the P I Z E R instruction. If Pl is made smaller most

of the reduction will be done the first time through the algorithm and there

will be fewer p computations thereby saving time. The obvious danger here

is that the optimal rank as defined by p will be bypassed. P2 is a method

of changing the rank.

Now to conform to the output notation as it appears in Chap. 13 Fig. i

let S = T -I. Then B = SES'. But E is idempotent and symmetric so

B = SEE'S' = SE(SE)'.

number of columns of

r is maximal and E

can delete the zero columns of

affecting the product

But SE does not conform to the requirement that the

SE equal r 3 the rank of B3 except trivially when

is the identity• If rank is not maximal 3 however 3 we

E and call the resulting matrix E without
r

(SE)'B=SEr r •

It is also desirable sometimes to have a matrix P such that

pep I _-

Ir

0

m

This is the same as having the first r

pendent and also the first r columns.

0

0
n

u

rows of PEP' being linearly inde-
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The output to D E C 0 M consists of the matrices S 3 T_ Er_ P,

E and the rank r of B in that order.

4. Checks" To illustrate DECOM we have used the matrix B appearing in

Check A of Chapter 5. In Fig. 2 is SE. In Fig. 3 is SE(SE) and in

Fig. 4 is TBT'. These results are quite good.

To illustrate the possibilities of the PIZER instruction we ran

this same matrix with Pl = 1 and P2 = 108" This gave a rank of one_

Pl = 1 let it pivot only once before iteration began 3 P2 = 108 g_ranteed

that p would be larger for rank 2 than for rank one. SE 3 SE(SE)' and

TBT' appear in Fig. 53 6, and 7.
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CIIAPfERVI

THE I NV R S PROGRAM

i. TheorZ. Elementary row operations maybe represented as premultiplica-
tion by nonsingular matrices, elementary columnoperations as postmultiplica-

tion by nonsingular matrices. Furthermore, the proper matrix may be con-
structed by peiTorming the desired operation on the identity matrix.

In the AndreI algorithm (see Chapter IV) we can obtain a pseudo inverse

of M if we have matrices, R, C such that RMC= E where E is a diagonal
matrix containing either zeros or ones. The matrices R and C can be

obtained by setting up the equation

IMI-M

reducing the right hand M to E by elementary operations and performing

the same row operations on the left hand identity and the same column opera-

tions on the right hand identity.

However if M is nonsingular, then M can be reduced to an identity

by row (or column) operations alone.

It is precisely this procedure which the ASP I N V R S routine

(Share subroutine U A I N V l) uses. There is one interesting aspect,

namely that the identity matrix and the matrix to be inverted are both kept

in the same storage area, or rather that the matrix being inverted is systema-

tically replaced By its inverse.

2. Comgutatio_. Column I is searched to find the element mpl which is

largest in absolute value. The remaining elements of row p are each divided

by mpl; the reciprocal of mpl and the resulting n elements are stored

in eraseable storage in the following order:
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m
mp2 l
mp I, " mpl, mpl

The first row of the matrix replaces row p in the matrix, and a

record is kept of this replacement.

At this point, the only elements of interest in the original matrix

are those in rows and columns two through n. Row 1 (originally row p) has

been kept in sotrage and column one, rows two through n will be zero after

reduction.

Remembening then that i and j range from two through n, each

element m. of the
iJ

(n - l)x(n - i) submatrix is replaced by

m

mij - mil m-__'"
pl

This reduced mij is restored in location mi-1, j-l" This process is carried
mil

on in row order and, at the end of each row, the quantity - --- is computed
%1

and stored in the cell that formerly held mi-13 n"

After this process has been completed for rows two through n, the

n elements l) from eraseable storage are stored in those cells which originally

contained the last row.

Now to obtain an idea of what has been done, let us see what the last

column of the matrix is now

2) -m21 4ll 1
m

' "'" m ' m ' "'" m
mpl pl pl pl

But this column is, except for order, the pth column of the identity matrix

if we performed on it the row operations which reduced the first column of

M to all zeros except for a one in row p.

The foregoing process is repeated n times, the only change being that

during the initial search for the largest element, the law row is ignored during
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the third reduction, etc. Notice that because of the one column shift,

the first column contains successively the first 3 second, etc. columns of

the reduced matrix.

Remembering that we worked first on the pth column of the identity

matrix 3 it becomes evident that after all the reductions are completed, the

row replacements that were made are examined and the corresponding columns

are interchanged. The result is now the inverse of the original matrix.

Except for the destructive _ •_ +_ __ompu_a_o,,, this operation is very much

like the Andre algorithm used in P S E U 0. There are two very significant

differences. One is that P S E U 0 preserves and takes advantage of the

symmetry of the input matrix, hence we might expect to do a little better on

nonnegative definite matrices. Secondly, I N V R S uses the large'element

in the first column to choose which now shall be used for reduction. In

P S E U 0, the choice is made from the largest element on the diagonal. Thus

I N V R S seems to have a slight advantage. This selection of the largest

element to use in reduction is a purely numerical point and probably should be

made even more sophisticated. For instance in the check problem, all elements

in the first column are one, so I N V R S choose the last one it found. But

unfortunately the last row was the worst one to choose as the xI equation.

It was actually rather surprising to find that P S E U 0 did a better

job than I N V R S. Probably more investigation should be done, but it appears

that P S E U O, with P I Z E R equal to zero, should probably be used to

invert nonnegative definite, symmetric matrices.

Care must be taken in using I N V R S because the only control in the

program is a test to insure that m the new pivot element (largest element
th zj

in the j row) is nonzero. If mpj = 0 I NV R S will return with an error

statement.

3. Chec_______.This being a Share subroutine, we did not feel that a great amount

of checking was necessary. However as a comparison we ran the 7 × 7 matrix

C) for P S E U 0. The difference between _2 and the inverseused in check

as computed appears in Fig. 2. Notice that it is element by element, worse than

P S E U 0 + and that the computed inverse was not symmetric.

- 167-



Yes

No

I Make Col_amnI nte rehange s

Fig. 1

- i68 -



i'M

'_U

V'l

._1

,J

LI.

a_

IP,..

i

!,JJ

NI
01

',..UI
OI
,-,,i i

0',1

,,DI
I._1
t_,d

QOI

NIOl ;

kUt U

_I 14I

I

¢',11

i i I

uJI
e,.ll
u_l
_-t-E .0

a,i ,_

+1 •

0 ,

e%ll

, , I

all _

NI

i °
I

O

I I

I

rj ,_ O0

I I I I

r'.- _0 0 0

+ • . •

O0 ,_mO

I I

I 1
tu

.30

O ¢M

-4 {%

i
C

I

I

t.L
I%

u_
C

-I

I

0

I

I I

U _

I

I

:..I.,

r.,.
c',,.

I

I I
.k II

u" .0

0 ,..4

I

g _
I I

,f3 ,_

:N r'_

_ g
I

I I I I
& ,.LI _Ud_

I I

I I

'1 ,H

0" -0

C O

, I

I

O

I I
UJ _

_ °0
_0 "m
oO p,,

Ig o
I

¢N I rxl _M _1

+17 °I I I
aj .U .._ J.l

4- _'3 "N 0

;Ig ?T
t
I

- 169 -

2_I
I

ii '_'1

"_ aOI
.0 .'_1

n_ COl

•"4 OI
% ,-ii

1

I I

_ k¢3

"_1 P'-

g g
I

I I
uJ Ill

'O

'4" _

I

O

I

L_

O

,'M

O

I

CN

.i.l

I

I
tL

.,¢,

,,o

,¢

dJ
)...

I r-.-

"O •

0
p_

0

Z



CHAPI_R VII

THE RICCATI EQUATION

i. Description of the Problem: Although ASP is useful for many purposes

other than optimization calculations_ the majority of the methods are derived

from the calculus of variations. We are primarily interested in the so-called

"theory of the second variation"_ which is implemented computationally with

the help of the riccati equation. This chapter_ much longer than the average 3

constitutes a short textbook of the second variation together with a detailed

treatment of the riccati equation.

2. References: There does not exist at preseilt a complete and modern treat-

ment of the theory of the second variation written primarily from the compu-

ting point of view. True, the computing aspect is emphasized in the papers

of Arthur Bryson (and also in the forthcoming book by Bryson and Y. C. Ho).

But Bryson eschews rigor to such an extent that in his exposition the

classical methods seem to be far more limited than they really are.

Almost all practical results of the calculus of variations are to be

found in the pages which follow. The general theory @hich we discuss only

very briefly)3 is required to justify the passage from "linear" to "local"

but plays no direct role in the computations.

Good treatments, showing full awareness of the history of the subject 3

may be found in

ll] J. Radon_ "Zum Problem von Lagrange", Hamburger Matematische

Einzelschriften_ No. 6, 1928.

/
[2] C. Caratheodory_ VARIATIO_RECHh_0NG, Teubner_ 1935.
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Mathematical research concerning quadratic variational problems is by no

meansfinished yet; in fact, this is a field of applied mathematics where

functional analysis can provide new insight as well as practical benefits.

See especially

[3] M. R. Hestene_ "Applications of the theory of quadratic forms

in Hilbert space to the calculus of variations" Pacific J.
#

Math., l_(195l)525-58l.

Our treatment here is the continuation of our expository article

[4] R. E. Kalman, "The theory of optimal control and the calculus of

variations"j Chapter 16_ MATHEMATICAL O_TIMIZATION TECHNIQUES 3

edited by R. Bellman, 19633 Univ. of California Press.

See also

[5] R. E. Kalman 3 "Contributions to the theory of optimal control"_

Boletin de la Sociedad Matematica Mexicana_ 19603 PP. 102-119

which contains a detailed study of the riccati equation. The modern form of

the necessary conditions of Euler and Lagrang% the so-called canonical

differential equations of the calculus of variations_ is given in the well-

known monograph

[6] L. S. Pontryagi_ V. G. Boltyanskii3 R. V. Gamkrelidze, an___d

E. F. Mishchenk_ THE MATHEMATICAL THEORY OF OPTIMAL

PROCESSES 3 Interscience, 1962.

[7] I. M. Gel'fand and S. V. Fomin, CALCULt_ OF VARIATIONS 3 Prentice-

Hall 3 1963.

[8] M. Mors____%CALCULUS OF VARIATIOK_ IN THE LARGE 3 Am. Math. Soc. 3

1934.

[9] S. Sternberg_ LECTURES ON DIFFERENTIAL GEOMETRY 3 Prentice-Hall 3

1964.
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[lO]

[ii]

[_]

o

time ) dynamical system.

(3.1)

R. E. Kalman 3 Y, C. Ho; and K. S. Narendra 3 "Controllability of linear

dynamical systems"; Contr. to Differential Eqs.; 1 (1963) 189-213.

_¢

f "UbeC. Caratheodor_y_ r die Einteilung der Variations probleme von

Lagrange nack Kiassen"; Comm. Helv. Mat.; _ (1933) 1-19.

R, E, Kalman, "When is a Linear Control System Optimal?" Journal of

Basic Engineering_ March 1964.

The General Optimization Problem: Consider the (differential or continuous-

dx/dt = f(t, x, u(t))

where

t = time = real number;

x = state = real n-vector; [x] =Z

u(.) = input or control function = continuous

function: t -e u(t) = real m-vector; [u(.)] =

f = continuous n-vector function of t 3 x_ u.

The general solution of (3.1) is assumed to exist for all t and is

written as

x(t)= _t; _, x, u(.)).

We wish to choose a control function u(.) for each initial state x

in such a way that the functional

(3.2)
v(_,_, T; u(.))= x(T,_(T;_, x, u(.)))

+ I L(t, cp(t; _, x, u(.)), u(t))dt
t

is minimized over 2 subject to the condition
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x(_)= x,

(3.3)
_ (T, _(T;_, x, u(x))= o

1
i= 0, ..., q -_n.

[The second half of these conditions defines a boundary manifold _, which

is a subset of {(t, x)). Hence (3.3b) can be written also as (T, x(T)) ¢ -_.

If q = 0, there a_ no constraints on x(T). Note that T is implicitly

determined _'_ t_ 3b) ] We require also

(_.4) u(t)_ M, t_ [_,m].

We assume that f, k, L, Yi are smooth functions. M is often (but

by no means always) a convex set and is sometimes also assumed to be compact

(to express the fact that the control signals are limited in amplitude).

[It makes little difference theoretically but it greatly simplifies

our exposition if T = const. This we shall usually but not always assume.

Then Yi will be independent of T3 and therefore_ will be a subset of

Z]

4. The Canonical Equations: It is well known that this problem is studied

with the help of the hamiltonian

(4.1) H(t, x, y, u(t))= TI*L(t, x, u(t)) + (y, f(t, x, u(t))),

where q* = const._ y = real n-vector, called costate, and ( , ) denotes

the scalar product.

According to the "minimum principle" of Pontryagin and his collaborators

[6], which is none other but the modern version of the classical "multiplier

rule", we have the following necessary condition for optimality:
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THEOREM. A control function u*(.) and the corresponding trajectory

x*(.) can be optimal only if there exists a costate function y*(.) and a

constant q* such that the differential e_uations

(4.2)
_x/dt= _(t, x, y, u(t)) _'Il)

dy/_t -Rx(t,x, y, u(t)

are satisfied by x*(.)

"minimum condition"

an___y*(.) on t _ [_,_], U* = 0 or l, and the

(4.3) H(t,x*(t),y_(t),u*(t))___(t,x*(t),y,(t),_), t _ [_,_]

holds for any ue M.

Moreover 2 the solutions

boundary conditions

x*(.) and y*(_) of (4.3) must satisfy the

(4.4)

z__#(_,x(_)),

whereT_(t,x)= t_an_entmanifoldof_-_#at

z_ _.#(x)iff_(x(_))z= 0,

(t, x). Note that

i = 0, ...j q -_ n.

A triDle oi functions Ix(.), y(.), u(.)] which satisfies Pontryagin's

theorem quotea above is called a _seudo-extremal. We reserve the superscript

* for m_i_mizing curves. It is by no means true that every pseudo-extremal

corresponds to a minimizing curve.

A pseudo-extremal is called regular if _* = i and if for each

t e [_, t] the hamiltonian H(t 3 x(t)3 y(t), u) has a unique (absolute)

_) _, %, kx, etc. denote partial derivatives 8H/SPi , 8_/8xi, etc.
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minimumwith respect to u c M (which then must be necessarily equal to

u(t)). Thus a regular extremal is specified by the pair Ix(.), y(.)];

because u(.) is implicitly determined by x(.) and y(.) by (4.3) and

the requirement of regularity.

A pseudo-extremal is called an extremal if it has the following

property: If t', t" ¢ [_, T] and It" - t' I is sufficiently small

there does not exist any input u(.) _ u(.) such that

(i)

(ii)

^'_" = t' _(t'), u(.)),x_ ) _t"; ,

t" t"

I L(t, _(t), u(t))dt < I L(t, _(t), u(t))dt.
t' t'

Note that a pseudo-extremal merely satisfies a certain necessary con-

dition (recall that Pontryagin's equations are the generalization of Euler's

equations), while an extremal has the additional property that small pieces

of it are actually minimizing curves.

The main theorem of the classical calculus of variations asserts :

Every regular pseudo-extremal is an extremal.

By Pontryagin's theorem_ the control function u(.) is optimal only

if there is a pair [x(.)j y(.)} which 3 together with u(.), is a pseudo-

_Yt_m_]. x(o) is determined directly from u(.) using (3.1) (or the first

canonical equation (4.2a)); y(.) then exists for abstract reasons and is

generally not unique. Therefore having passed from u(.) to Ix(.), y(.), u(.)],

it is not obvious whether "regularity" is an intrinsic property of the

"independent variable" u(.) or whether it depends also on the choice of

y(. ). It can be shown, however, that regularity is well defined inde_endentl i

of the possible nonuniqueness of y(.).

It is not hard to prove [4] that regular pseudo-extremals satisfy

the free canonical differential equations

(4.m)
I dx/dt = H°(t, x, y),

Y

dy/dt = HO(t, x, y),
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together with the boundary conditions (4.4), where we have set

(4.6) H°(t, x, y)= min L(t, x, u)

Ug m

min L(t, x, u) + (y, f(t, x, u)).

u£ M

This result is tr_ if we make suitable smoothness assumptions concerning H

and the terminal set _. Note that by regularity we have set _* = i.

Equations (4.5) allow us to determine each regular pseudo-extremal

via the solution of a two-point boundary-value problem involving ordinary

differential equations. Thus the problem is reduced to examining all solu-

tion of (4.5) which satisfy the appropriate boundary conditions and then

picking out those solutions (if there is one) which are actually optimal.

Using the canonical equations 3 we can get only necessary conditions; suffi-

ciency can be proved by adducing additional arguments.

5- The hamilton-jacobi equation: Under suitable smoothness assumptions_ the

family of all optimal trajectories can be determined at the same time by

solving the hamilton-jacobi partial differential equation

V°o + HO(t, x, ) = 0(5.i) vt x

subject to the initial condition

(5.2) V°(t, x) : k(t, x) for (t, x) g-_.

Note the substitution of V° for y in H°. It follows that
X

(5.3)
T

V°(X, x) = min [k(x(T)) + f L(t, x(t), u(t))dt],

u¢ _

(T,
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The existence of a function satisf_in_ (5.1-5.2) is a sufficient

(but in general not necessary) condition for the existence of optimal

trajectories. Moreover_ our notations imply that H has a unique minimum

with respect to u3 from which it follows that if V ° given by (5.3)

satisfies (5.2)3 trajectory x(.) starting at x(_) = x is unique.

By slight abuse of language 3 let iAs henceforth call a regular pseudo-

extremal simply an extremal. (We shall be concerned solely with regular

_ha_ is 3 *_problems_ _ - * _ case where all pseudo_xtremals are not regular and

hence, by the main theorem of the classical calculus of variations_ extremals.)

6. The Accessory Variational Problem. Let [x(. ), y(.) ] be an extremal, i.e.

a pair of functions satisfying the canonical differential equations (4.5)

with arbritary initial values Xo3 Yo" One can show by standard arguments

in the theory of differential equations see, e.g., [2]) that

_(t) - _(t) = _(t) + o(H% - xN + Lhyo - _oil)

and

y(t) - _(t) = _(t) + o(llx ° - %11 + flY o - _olI),

where the functions _(.) and _(. ) are determined by

(6.1) i d /dt : +
d_/dt = _:z_x(t)_ - <y(t)_,

with initial conditions

m

_o =xo -Xo' _o = Yo - Yo"

_-o

The ,. _,. n matrix functions Hyx(.)3 ... are second partial derivatives

evall_ _ along the fixed extremal [_(.)_ _(.)]. We assume of course that

F_ L_ k are so smooth that H° is at least twice continuously

dif fere __ - _ _:le.
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Let us introduce the abbreviations:

(6.2)

F(t) = _yx(t)

Q(t) = _xx(t)

_(t)= _(t)

G(t)_'(t) = _yy(t).

(_plies _o (t)= _'(t))
xy

The last step is legitimate only if we can show that _yy(t) is nonpositive

definite. This follows from minimality. (Note that G is not determined

uniquely by (6.2), but this fact will be of no in,rest for us.) The proof

is as follows:

Let c(t, x, y) be the argument at the absolute minimum of H

with respect to u g M for given t, x, y. Then

H°(t, x, y)= H(t, x, y, c(t, x_ y)).

We fix t and write H° for H°(t, x(t), _(t)), x for x(t), c for

c(t,x(t),_(t)),etc._ y _ll be a freevariable.We _ga_ _°(t,x-,y)

as a function of y and expand it by Taylor's theorem around y = _. Thus

for any y we have the identity

_o(t' _, y) _-_o+ <_, y __>+etly- ,_11_*
YY

where 0 ! e ! i is a scalar dependent on y. Since

_o = f(t,x, _),
Y

it follows that

2

e(y)lly- _11_o = H°(t, x-, y) -H(t, x, y, _)

YY-_O

* The notation

matrix A.
llxll_means: quadratic form with respect to oh# _:v_:_!tric
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by the definition of H°. Hence _o is nonpositive definite. (If

- _ 2_
0(y) = 0, then H°(t, x, ") is linear and so fly - _llHO = 0.) Note the

similarity of our proof to the classical arguments assoc_ted with the

weie rstrass "E-function".

Equations (6.1) characterize the situation near an extremal. We

shall now show that these linearized equations may be regarded also as the

canonical equations of a certain variational problem related to the original

one. Thus each extremal [_(.), _(.))] will give rise to a so -called

accessory variational problem. To define this accessory problem, we must

say what f, L, k are and then we must specify appropriate boundary condi-

tions.

We will use the hat to denote the functions defining the accessory

problem, while the Greek letters _, _, _ will correspond to x, y, and

u in the original variational problem. We introduce the following defini-

tions

(6.3)

f(t, _, I_(t)) = _(t)_ + _(t)l_(t)

2£(t, m, _) = llmll_(t).+ I1_112.

2_(t,_)= !!e!!__(t.)

Then we find that

(6.4)
^ _ + a(u, _(t)_ + _(t)_> + I1_1122_(t, _, u, _)= 11_11(t)

and

(6._)
2_°(t, _, u)= ll_ll_(t) + a<_, _(t)_> -ll_'(t)ull 2.

It is clear that the accessory variational problem is always regular.

(In other words, pseudo-extremals of the original variational problem which

are near a regular pse_io-extremal are regular in the first approximation.
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Of course, when the given pseudo-extremal of the original variational pro-

blem is not regular, wc cannot define an accessory problem in the manner

indicated because then equations (6.1) have no meaning.)

Using (4.5) we can write down the canonical equations of the acces-

sory extremals :

(6.6)

A

dB/dt = _o = _(t)B - _(t)_'(t)_
li

A

d_/dt = H_ = - Q(t)B - _'(t)T I.

Recalling our abbreviations (6.2), we see that these equations are the same

as (6.1). Hence we have a fundamental result which is the basis of the en-

tire theory of the so-called second variation:

THEOREM. The extremals near a (regular) extrema_ are obtained in

the first approximation by solving the accessory variational problem defined

by (6.1), (6.2), an___d(6.3).

Let us now specify the boundary conditions for the accessory problem

in the case when T = fixed. The terminal point must belong to the tangent

manifold of _J, hence

(6.7) i(T)_(m) = o

whe re

(6.8)

_(m) = r(x(_)),r =i
2

X

\

(By convention, i(T) = 0 if q = 0, i.e., there is no constraint on x(T).)

On the other hand, (4.4) gives the constraint
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z>

whenever X(T)z = O; otherwise _(T) is a free variable.

7. Digression on the Second Variation: Let us give now a derivation of

the accessory variational problem 3 reminiscent of the way it was done in

the nineteenth century. The idea is to expand the functional

V(_3 x3 T] ") defined by (3.2) into a generalized Taylor series near a

given fixed value u(. ) of the function u(.). Thus one introduces the

"first variation"

6u(.) = u(.) - u(.)3

$2 ..... ,,and second variation (.)3 etc. The term on_ "second variatmon asso-

ciated with 52u( .)3 turn out to be essentially the same as the V function

associated with (6.3).

Although these imprecise ideas can be given meaning using functional analysis

(see particularly [7]3 where a clear discussion of "strong" and "weak" first

variation may be foun@3 this is not especially fruitful from a practical point

of view because it requires the apparatus of infinite-dimensional analysis 3

whereas the main advantage of the classical theory lies in its ability to

treat finite-dimensional problems by fairly well-known methods. Since there

is monstrous confusion in the engineering literature concerning the use of

the purely symbolic first variation 5u(.) (see Bryson 3 loc. cit. in Sec. 2

for a careful treatment)_ it is of some interest to give here a rigorous

derivation of the "second variation" using only finite-dimensional analysis.

It is emphasized that this derivation is included mainly for cultural reasons 3

since the analysis of the previous section has already shown why the s_ces-

sory variational problem is important in the study of local properties of

extremals
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Wefollow Carath_odory's treatment [2_ §315-316].

In order to calculate rigorously the derivative of V with respect

to u(.)_ we assumethat instead of infinitely manyindependent variables_

namely u(.), V depends only on the n-vector p. In other words, the
family of control functions [u(.) ] = _ admitted into competition for the

minimumof V will be an n-parameter family 3 indexed by the n-vector p.

This is a very great simplification of the original variational pro-

blem] it is justified as follows. By regtularity, our extremals Ix(. ),
y(. )] are at most of a 2n-dimensional family since they must satisfy the

canonical equations (4.9) and are therefore uniquely determined by 2n

initial (or end) conditions in (4.5). But the transversality conditions

(4.4) impose precisely n constraints_ so that the extremals may be indexed
n

by precisely _ numbers, hence by the n-vector p.

To show how p is actually determined 3 st_opose the terminal surface

_ has r -_ n dimensions (_ is embedded in the (n+l)-dimensional space

X × time). Since _ is smooth, it can be parametrized by an r-vector

- _. The tangent space T_ at (Tj x(T)) is a linear space of dimension r]

it follows from the transversality conditions that the vector y(T) is the sum

of kx(_) and a vector Yfree' which lies on a linear manifold of dimension

n-r. We write Yfree = y(v), where v is an (n-r)-vector. Then

(7.1) p = v).

(Consult [8, Chapter 2] or [9, Chapter 6] for a rigorous description of the

transversality conditions for parametrized terminal surfaces. Unfortunately both

authors restrict themselves to the ordinary (_ = u(t)) variational problem.)

;T, x(T),y(T))

and

,(. ; T, x(T), y(T))

are the solution functions of (4.5)_ we may consider both

depend on the n-vector parameter p by setting
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T = T(_), x(T)= x(_), Y(T)= _x(_)+ y(v).

We consider x(t) : _t_ p), y(t) : _(t_ p) u(t)= c(t# _t; p),

_(t; p)) = _(t 3 p); after substitution into L, H, k, F, etc., everything

becomes a function of t and p only. Thus, with a slight abuse of

notation

(7.2) L(t, p) : H_(t, @, _) - (_, f(t, @# _)).

Differentiating with respect to p we get

J

(7.3)

Lp: .o+ _%o _ _*"fx% + fu*p)- <*_'f>

= o+ + o -r - (_,

= - <*,_>t"

We have used the following substitutions:

f_ + f_ = _ : %t

f = Hy,

they are true because @ and @ satisfy the canonical equations (4.5).

Along our n-parameter family of extremals the derivative of V

is given by

T(P)

Vp(_, x, T; p) = '_-_[k(T(P)' q_(T, p)) + I L(t, p)dt].
T
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Using (7.3) we obtain

: _t(_)T+ _x(T)%(T)+ L(_)T° + <,(t),_^(t))Vp
T(_)

Using the transversality condition (4.5) this simplifies to

(7.4)

If T = const._ this fomula shows that the initial value of y must be

chosen in such a way that

(_ x, T; 0): _ v°(T,%(T),T)Vp 3
P

_-<v°(_), %(_)>;

in other words

y(_)_ _(_).

V °This is a well-known result; the substitution y _ was already encountered
X

in connection with the hamilton-jacobi equation.

have

The second variation of V is now easily calculated. From (7.3) we

-L
PP

or

(7.5) ,0,:ll_H_o-11,_H_o-<,._0,>_.
H

xx yy
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The-last step follows by differentiating the canonical equations (4.5)

with respect to p.

Using (7.5), we obtain the following expression for the second
variation of V :

(7.6)
2

Vpp = [kt(T) + L(T)]Tpp + 2(Lp(T), Tp> + IITpllxtt(T)

T(0)
2

+ II%(T)IlXx (T)+
]dt.

The first two lines depend on quantities associated with the endpoints T and

T(p). The third line has the same general appearance as the accessory varia-

tional problem. We shall make this relationship precise in the next section;

we summarize the discussion so far as follows:

THEOREM. If the variational problem is regula_ we may confin e the

search for an optimal trajectory to the solutions of the "reduced" canonical

equations (4.5). Takin_ account of the boundary conditionsj we are led to

consider an n-parameter family of solu-biors of these equatior_. It suffices

to calculate the first and second variation of V along this family_ since

no uu_ u_g_uorle_ are admitted _+_ _o_+_n_ for the minim,__m of V.

This being so, the first and second variation of V may be computeId

rigorously via ordinary calculus; the formulas for the derivatives of V

are given b_ (7.4) an_dd(7.6). These formulas show that the derivatives consist

of two parts: (i) a part dependent only on the derivatives of various functions

at the endpoints • and T of a _iven extremal; (ii) a part (o__cc_urring in

only) which is the V function of the accessory variational problem.

Note that for the accessory variational problem (part (ii) in (7.6))

we may ass_ne that T = const.
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The formulas we have obtained must be interpreted with some care.

For instance, in the engineering literature the term _pp(_) is sometimes

neglected as "small". This is legitimate in certain cases, but for different

reasons: Usually we wish to solve the problem for arbitrary initial x(_),

so that the initial boundary surface may be regarded as free. If we para-

metrize this boundary surface instead of the one at t = T, then we may

take p = x(T), so that q_ (v) = unit matrix and _pp(V) = 0 (a three-

tensor). But this parametrization may be inconvenient because we have no

natural transversality conditions given at t = • (we would have to know

what V°(_) is) and therefore the boundary conditions at t = T may be
X

difficult to meet. For such reasons, it is usually more convenient to

parametrize the boundary surface at which there are nontrivial boundary

conditions, and in that case it is not true that _pp(_) can be neglected.

The particular choice of parameters adopted here will be useful in

our later studies. The reader should be clear, however, that the same techni-

que can be used to investigate V as a function of families of curves which

are not necessary extremals. In that case, we consider instead of (7.2) the

expression

L(t, p)= H(t, % _, u) -(_, f(t, % u))

where _ is a solution of _ = f depending parametrically on p since

[u(.)] is a family parametrized by p. In order for (7.3) to remain true,

we must assume that _ satisfies

(7.7) = _  x(t,% y,

then the previous considerations remain valid. If we take the family [u(.)}

such that
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for all p, then we obtain a necessary condition for minimizing curve

as V = 0. This is the old-fashioned way of deriving necessary conditions.
P

We must emphasize that formulas (7.4) and (7.6) remain valid only

as long as _ satisfies (7-7); each parametrization will in general provide

a different 4-

8. The General Quadratic Variational Problem: Most of our succeeding work

will be concerned with the solution of the accessory variational problem_

WhiCh is also called a qaa_z_u-c vaL_u-u_=- _ruu±_u_. We wish to standardize

the notation as much as possibl% and therefore we now repeat the definition

of this problem in a notation that will remain in use throughout the report.

A (continuous-time) quadratic variational problem consists of the

following :

(i) Dynamics. This is a linear differential system given by

(ii)

dx/dt : F(t)x + G(t)u(t).

Pe__formance index. This is the functional

x, T) = Llx(t)Hs2(T)
T 2 2

+ I [llx(t)llQ(t) + llu(t)llR(t) ]dt"

(iii) Boundary conditions.

At t = _, x(_) = x (_ = const.)

t = T, A(T)x(T)= 0 (T= co t.)

(iv) Assumptions. The matrix R will always be symmetric and posi-

tive definite (for regularity) and usually R = I. Q and S will always

be symmetric.

(v) Hamiltonian.

2 _ J2H°(t, x, y)= NXllQft_ + 2(y, F(t)x) -llG'(t)yll _l,t,.[)
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(vi)

(vii)

Canonical equations.

dx/dt = F(t)x - G(t)R-l(t)G'(t)y,

_/dt = - Q(t)x- F'(t)y.

Optimal control law.

u(t) = - R-l(t)G(t)y(t).

Remark. "Quadratic" means that L must be a quadratic function of

x and u (the t-dependence may be more or less arbitrary). It may be

useful occasionally to consider cases where L contains a term of the type

u'Wx. Such problems can be reduced to our present problem by a simple

change of variables. See [12]. For most of our work we prefer not to carry

along this extra notation in the definition of L. In particular_ the riccati

equation program is written under the assumption that the term W in L is

ze ro.

It is easy to show now that the last part of (7.6) corresponds to a

quadratic variational problem.

Let Po = 0 be the parameter corresponding to the extremal

Ix(.), _(.)] considered in Sect. 6. Write

n(t)= _(t) = _(t,0) - 9(t)_ _0(t,0)p

= ~ (t,0)0_(t) _(t) = u(t, o) - _(t) = -_o

where _ means correct "to the first approximation".

Differentiating 44.5) and making use of the abbreviations (6.2)

(but dropping superscripts, etc.) we obtain

(8.1)
q)O = F(t)Cpp - G(t)G'(t)@p

_0 = - Q(t)% - F'(t)_ 0.
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In other words, _p and _p are a pair of matrix solutions of the canonical

differential equations of the generic quadratic variational problem. (To

agree with the equations given under (vi) above we must set R = I.) In view

of this observation we introduce a special notation which is to remain in

effect throughout the report:

(8.2) X(t) = cpp(t), Y(t) = @p(t).

Then we have

= x(t)m 9(t) = Y(t)p, _(t) = - G'(t)Y(t)p

for each fixed p. Of coursej _p = G'Y.

Then, if p = _(_), (7.6) shows that

(8.3)
_p T 2I1_(_)11 _ iia(T)Ila(T) + I (ll_(t)llQ(t) + II_'(t)ll 2)dt

P

+ terms depending directly on _, T.

Thus the critical part of the second variation corresponds to the evaluation

of the performance index of a quadratic variational problem along its

ext remals.

We will see that the study of the accessory extremals provides con-

siderable information about the solution of the two-point boundary-value

problem; in fact, this aspect of our theory will turn out to be more impor-

tant than the somewhat pedantic emphasis on the second variation.

9. Solution of the General Quadratic Variational Problem: Quadratic varia-

tional problems can be solved explicitly with the help of the hamilton-jacobi

partial differential equation. In our case this equation is
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(9.1)

subject to

(9.2)

+ _llxlIQ(t = 0VT + (Vx, F(t)x) -½11a'(t)v_ll _l(t) )

2v( ,x)=IIxIIs2( )for x ¢ -_J.

(9.3)

The hamilton-jacobi equation is easily solved in the special case when

_° _ I (_J x)_ f = T = fixed 3 x =arbitrary_.
I

In the remaining cases an indirect procedure must be used. One of our objec-

tives is a detailed explanation of the theory and computing procedure in the

general case when _@ may be a linear manifold of any dimension. For the

moment we shall consider only the special case when dim _I = n.

It can be easily proved that when T = fixed_ _ = _ the hamilton-

jacobi equation 3 as well as any first-order partial differential equation_

has a unique C2 solution (as long as k is C2 and various other natural

smoothness hypotheses hold.) See 3 e.g._ [2_ §22].

(9.4)

We will now exhibit this solution.

We assume that

2v(t,x)= IIxlI_(t),

where P is a symmetric matrix.

In order that V given by (9.4) constitute th@ desired solution of

the hamilton-jacobi equation_ it is necessary that

(9.1') - dP/dt = F'(t)P(t) + P(t)F(t) - P(t)G(t)R"l(t)G'(t)P(t) + Q(t)

and that
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(9_2') P(T) = S(T) = const.

The first equation corresponds to the hamilton-jacobi equation and the second

corresponds to the initial condition of that equation.

Conditions (9.1'-9.2') are also sufficient, by the uniqueness of

solutions of the hamilton-jacobi equation. (Substitute (9.4) into (9.1) and

note that V satisfies (9.1) iff P(.) satisfies (9.1'). It is vital lZ

important for the understanding of this report that the reader be familiar

with all details of this particular substitution. No tricks are involved,

just matrix notation and a large amount of manipulation. ).

We have then the

THEOREM. The special quadratic variational problem is solved if and

only if the riccati equation (9.1') has a solution ]_ (.9 T, S(T), Q(.))

defined for t = T.

Note that since (9.1') is a nonlinear differential equation (the quad-

ratic term is essential. _) it may be subject to the phenomenon of finite

escape time, namely a solution may be defined on an interval (t', T] and

as t -_ t' P(t) = _ (t; _3 S(T), Q(.)) -_ _ (at least one element of

P -_ _). Then t = t' is called the (left) conjugate point associated with

T. if v _ t' 3 then the solution of our problem does not exist 3 because

(proof later) then V(T_ x) can be made arbitrarily negative by suitable

choice of u(.). This obviously cannot happen if both S and Q(.) are

nonnegative definite.

The main objective of the theory of the second variation is to in-

vestigate the existence and nonexistence of conjugate points, as a function

of Q(. ), S, the boundary conditions, etc. In the course of this theoretical

investigation, we will obtain explicit formulas for the solution of the riccati

equation (9.1'). We will also see the role played by controllability in _he

investigation of conjugate points.
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Our considerations are motivated by the roughly correct fact that when

no conjugate point exists, the necessary conditions leading to the canonical

equations are also sufficient for optimality. In other words,

[extremal + no conjugate point] = [optimal trajectory].

We will give a precise discussion of this result, the most important theorem

of the classical calculus of variations. The theory surrounding this result

also motivates all methods of numerical computation of extremals.

i0. Theory of the Riccati Equation Associated with a Quadratic Variational

Problem : The general form of the matrix riccati equation is

dX/dt = AX + XB + XCX + D.

We will not be concerned with such complete generality (whose theory is

similar to the case we shall treat) but will deal exclusively with (9.1').

The theory of this equation is very closely related to the theory of the

canonic a! equations.

The solution of the canonical equations is equivalent to the solution

of the riccati equation, provided no conjugate point exists.

We consider first the special problem.

As before let the pair IX(.), Y(.)] be a matrix solution of the

canonical equationsj that is.

(10.1)
I dX(t)/dt = F(t)X(t) - G(t)R-l(t)G'(t)Y(t),

dY(t)/dt = - Q(t)X(t) - F'(t)Y(t),

and specify the initial conditions as
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(lO.2)

We say that T has no conjugate point (in the special problem) if

det X(t) _ 0, t <T. Then we claim

THEOREM. If

_i _ is _.... by__ _ L,.._,.._. g_v_._

T has no conjugate point, the solution of the special

(mo.3) llxli (t)x-l(t)2v(t,x) = LixLi(t)= , t T.

Proof. We must show: If the pair X(.), Y(.) satisfies (i0.i)

with initial conditions (10.2), then P(.) = Y(.)X-I(.) is a solution of

the riccati equation (9.i')_ with initial conditions

P(T) = H(T)X-I(T) = S1-1 = S.

This is proven by straightforward but tedious substitions, which the

reader is again strongly urged to carry out for himself. Similar manipulations

occur frequently in deriving the riccati equation for various problems.

_T^_ vne nonexistence of a conjugate point"_v_e tD_t our definition of +_ "

is precisely that necessary and sufficient for the important formula P = XX -I

Our theorem admits the following converse:

THEOREM. If the riccati equation (9.1') has a solution defined on

[_ T], then there is no conjugate point in this interval , that_!is ,

det X(Z) / 0 fo__r t e [_, T]. (Of course X(.) is defined via the initial

conditions (10.2).)

Proof. If the riccati equation has a solution, then (recall Y = Vx)

the optimal control law is given by
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u(t) = - R-l(t)G'(t)Y(t) = - R-l(t)G'(t)P(t)x(t).

Therefore the optimal motion x(.) satisfies

(lO.4) dx/dt = H_ = [F(t) - R-l(t)G'(t)P(t)]x.

We want to show that X(.), which satisfies (i0.i-2); is equal to ¢(., T),

the transition matrix of (10.4), that is, of the optimal closed-loop system.

Then the theorem follows, because transition matrices are never singular.

We define

Y( ) P()X(.).

Then X(T)= I and Y(T)= S] moreover, the pair IX(.), Y(.)] satisfies

(i0.i). The latter fact is shown by direct substitution into (9.1') and

(10.4). This is the third type of substitution which the reader is urged to

carry out.

In the general problem the procedure we have used here to relate the

riccati equation to the canonical equations (and to relate both to questions

concerning the existence of a conjugate point) requires much more delicate

arguments. These will be discussed in the remaining parts of this chapter.

Before doing so we wish to establish two important properties of the riccati

equation:

A. Exact interpolation formula. Although the digital computer cannot

compute P(t) continuously in t, we can give a formula which expresses P(t)

exactly for any fixed t in terms of the initial values X(T)_ Y(T) of the

canonical equations.
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e
Let

sat is fie s

de/dt =

e be the transition matrix of the canonical equations; i.e._

m

F(t) - G(t)R-I(t)G' (t)

-Q(t) - F'(t)

m

ell el2

e21 822

The n

P(t) = [e21(t , T)X(T) + e22(t , T)Y(T)]x

x [ell(t, T)X(T) + el_t , T)Y(T)] -I.

In other words_ to find explicit solutions of the riccati equation we require

no more and no less than an explicit transition matrix of the canonical equa-

tions. This observation is the most important principle in the entire ASP

computing procedure.

Although the right-hand side of (10._) does not appear to be symmetric,

it is known abstractly to be so if P(T) is symmetric. For if _Ij = S is

symmetric (which is always assumed_ then by (9.1') P(T) = symmetric.

This is very important practically; for if P become unsymmetric due

to numerical errors_ the errors may propagate and lead to difficulties of

various sorts. The user of ASP should always check whether the assumption

of symmetry is needed in the derivation of equations to be computed. (The

riccati program contains an extra operation which assures that the output is

always symmetrical. This is desirable to impede error propagation due to

asymmetry. )

One can also show by direct algebraic arguments that the matrix (10.5)

is symmetric whenever
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(10.6) Y(T)x-l(T) = symmetric.

Condition (10.6) plays an important role in the general problem.

B. Symplectic character of 8. Let

[0nIn;jl(10.7) z= and J= ( = J' =-J).

L Y -I n On

A system of differential equations

(i0.8) dz/dt = A(t )z

is said to be hamiltonian iff it can be written as

_/_t : Hy, dy/dt : - Hx

whe re

H = z'M(t)z

and M(t) is a symmetric matrix. It is easy to show that (10.8) is hamiltonian

iff JA(t) = M(t) = symmetric matrix. Our canonical equations (8-(vi)) are of

course the principal example of a hamiltonian system.

A matrix X(t) is called symplectic iff x-l(t) = J'X'(t)J. A

symplectic matrix cannot be singular; in fact det X(t) -= i. If X is sym-

plectic_ so is its inverse; if A, B are symplectic, then AB is also

symplectic. So symplectic matrices form a multip!icative group. "Symplectic"

is similar to "orthogonal" and has interesting geometric interpretations (for

which see Mal' cev; LINEAR ALGEBRA).

- 196 -



We are interested in symplectic matrices because of the following

well-known result :

THEOREM. The transition matrix of a hamiltonian system is symplectic.

the n

Proof. If e(t, T) is the transition matrix of a hamiltonian syste%

de/dt= _(t)e, "_÷_ ..... ÷_

Let r(t, _) = e'(_, t) be the adjoint of e. Then P satisfies

or

_/dt = _(t)J'r

d[J'rJ]/dt = - JM(t)[J'rJ].

S inc e

satisfies the same differential equation as e_ we have

I

j'e'(_, t) J= e(t, _) = e-_(_, t).

_3

So e(_j t) is symplectic and therefore also e "(_ t) = e(t, _).

J'P(t_ t)J = J'J = I_ J'pJ is a transition matrix; and since it

Q.E.D.

Using the fact that e is symplectic we obtain the identity

e(t, _) =

_h

ell(t, _) e12(t, _)

_21(t,_) e22(t,_)
B

m

e_2(_, t) - e_'2(_,t)
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Later it will be useful to know:

mO_OSZTION,m___tIX(.),Y(.)}
equations (lO. i). If

be matrix solutions of the linear

X'(t)Y(t) = Y'(t)X(t)

for some t = _, then the same relation holds for all t.

Proof. Write

X(t) = ell(t , v)X(v) + el2(t , _>Y(T)

Y_t) : e21(t , _)X(V) + e22(t , T)y(T).

Then,

X'(t)Y(t) = X'(T)@_I(t , _)e21(t , _)X(_)

+ Y'(T)@_(t, T)e21(t , _)X(T)

+ X'(T)e_l(t , _)@22(% _)Y(_)

+ Y'(_)e_2(t , _)®22(% _)Y(T).

Now

ell(t, T)e21(t, _)= ®22(_, t)e21(t , T)

= e2Z(_, t)ell(t, _)

= e_l(t, _)Su(t, _)

(by symplectic)

(composition property

of transition matrices

(by symplectic).

The other terms may be rearranged similarly. Thus a term-by-term comparison

shows that the proposition is true.
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Similarly lwe can prove that P(t) given by (10.9) is a symmetric

matrix iff P(t) = Y(T)X-I(T) is symmetric.

ll. n-Parameter F_milies of Extremals: Let p be a constant n-vector.

Given any matrix pair [X(.), Y(.)} satisfying (lO.1), we define an

n-parameter family of vector solutions of (10.1) by setting

(iLl) t(t) :X(t)p

(q(t) Y(t)p.

(We are applying the considerations of Sec. 7 to the general quadratic

variational problem. According to the preceding theory every extremal of a

quadratic variational problem must be of the form (ll.1).

Conversely, we may ask the question: Is every pair [_(.), q(.)] of

solutions of (8-(vi)) a (regular pseudo-) extremal of the associated quadratic

variational problem?

The answer is well known to be NO. There is no difficulty in satisfy-

ing the minimum requirement (4.3) (since Uopt is a function only of y and

since the relation Uopt(t) = -R-l(t)G'(t)y(t) has been built into (10.1)).

However, there is an additional constraint imposed by the transversality

conditions (4.4).

PROPOSITION. An n-parameter iamiiy of solutions of (8-(vii)) defined

b__ (ll.1) is a famil_y of extremals of a quadratic variational problem if and

only if

(ii.2) X'(T)Y(T) = Y'(T)X(T).

In view of the fact _nat (3-(vi)) is a hamiltonian system, relation (11.2)

guarantees that X'(t)Y(t) = Y'(t)X(t) for all t.

Proof. The transversality condition imposes on X(T) and Y(T)

the requirements
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(ll. 3) A(T)X(T)p= 0 for all p,

<_(_)p,z> --<S(T)X(T)p,z> for all _ and all z satisfying A(T)z =

Therefore any row vector of the type

z,[Y(T)-S(T)X(T)]

is zero; since by (ll. 3) X(t)p = z satisfies A(T)z = O,

_'_'(T)Y(T)+ X'(T)S(T)X(T)]= 0

for all P3 which proves (11.2).

We will now derive a canonical set oi coordinates which will enable

us to state the constraints (ll. 3-4) in a particularly simple form. In other

words, we translate the tram_versality conditions into a specification of the

pair X(T), Y(T).

Let n- r be the rank of A(T) (hence r = dim_). By changing

coordinates we can exhibit A(T) in the canonical form

(i1.5) A(T) = [0 In_ r].

I.E._ we rotate the terminal manifold J_ so that it is given by

yi( ix) : x = o, i = l, ..., r.

x I i 2Then x can be written as ( , x2), where x is an r-vector and x

2
is an (n-r)-vector; x belongs to the terminal manifold iff x = 0. As

in Sect. 7, we parametrize the terminal manifold by the r-vector _. Then
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x " belongs to the terminal manifold iff x = (_3 0). B must be part of the

parameter p whihh determines our n-parameter family of extremals. Hencewe
set (cf. Sect. 77

= (_,v).

Let us determine the special form of the matrices X(T) and Y(T)

in the coordinate system introduced above_ writing them in such a way that

the condition (11.2) is automatically satisfied.

Since-_ is to be parametrized by _ and since every x(T) : X(T)p

must belong to-_'_, i.e., x(T) = (_, 0), it is clear that

x(_)=

m

Ir 0

0 0

Condition (11.4) shows that

y(_)= °i
\

where B_ C are arbitrary matrices.

notation. Then

We set Z = S for the sake of a simpler

y(_)=Y(T)p= (s _, _+cv).

The second term is an arbitrary (n-r)-dimensional parameter. We lose no

generality if we set B = 0_ C = I. Thus
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Y(T)= I̧]Z 0

0 I

It is clear that (i1.6) and (11.7) define the most general n-parameter family

of solutionsof (8-(vii)),whichare extrem_ls.

]2. Two Important Formulas: To complete our discussion of the parametric

representation of extremals, let us calculate the optimal performance index.

The first formula is

(12.1) I T(t, _(t),u '
t opt_V))dt : (_(t), _(t)) .

To prove it_ write

L(t, x, Uopt) = 2H°(t, x, y) + llG'yiI__I - 2y'Fx.

By homogeneity of H°_

L(t, X, Uopt)= %x + H :y + iiG'yl] 2R- 1 - 2y'FxY

Using the canonical equations we get

L(t, x, Uopt) = - x') + y'_ - 2y'(Fx - G'R-IGy)

= _ ylx)3

which proves (12.1).

Now suppose that det X(T) / O. Then we can write the right-hand

side of (12.1) as a function of D, as follows:
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On the other b_nd;

(_(T), _(t)) = P'X'(T)Y(T)P

= ll li 

(ll.7). Thus (]2.1) becomes

T

(_.2) I1_112 + f
T L(t, _(t), Uopt(t))dt =

which is our second important formula.

Suppose now that we have not merely det X(T) _ O, but

(12.3) det X(t) J 0 for all [7, T).

Then according to Sect. i0 we know that Y(t)x-l(t) satisfies the hamilton-

jacobi partial differential equation on the interval [7, T). f_T_+_ +_o+

the right endpoint T = t is not included in this statement since X(T) is

_, i o hami!ton-jacobio_-_ whcn r < n.) But th_ existence of _viut_on_ of the

equation is a sufficient condition for optimality. Hence we have our

FIRST MAIN THEOREM" If an n-parameter family of extremals satisfies

(12.3)3 then X(.)p is an optimal trajectory for ea_c__h p.

We now embark on a detailed investigation of the conjugate point con-

dition (12.3). It should be remarked right away that (12.3) is not a

necessary condition for optimality; the degree to which it fails to be optimal

is related to the controllability properties of the family of extremals.
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13. The Boundary-Value Problem_ Let us return now for a moment to the

original (not accessory) variational problem. If this problem has a

solution in terms of a (regular pseudo-) extremal, then this extremal

must be determined using the free canonical equations (4.5). This means

that we must know either the two initial conditions, x(T) and y(T) or

the two final conditions, x(T) and y(T). x(T) is given as part of the

specification of the problem, while y(T) must be determined by solving a

so-called "two-point boundary-value problem". Usually neither x(T) nor

y(T) is given.

Let us consider some typi. examples. Recall that _t; T, x(_),

y(_)) and _(t; • x(T), y(T)) is the solution pair of (4._) corresponding

to the initial values x(_), y(T).

(i) The endpoint is fr_ i.e., _/._= _. Then we must satisfy

the condition (obtained from the transversality condition)

(iD.i) y(T;_, x(_),y(_)) y(T)

= _x(T,=(_)

--_x(_,_T; _, x(_),y(_)))

This is an implicit relationship which determines y(T ) as a function of

x(T). Once y(_.! is determined, the extremals can be computed by (4._).

If (13.1) has a solution, xO(T) and p°(T), i.e._ L ° ,e have determined
@

a particular extremal , then using the implicit function theorem we can

s:;Ive (!3.1) provided the relevant jacobian is # 0. This jacobian can

L_.c ,c :f euv ", ::s i ::Jim: on the variables which are designated

as unknowns. In our presen_ casej it l_ cc<ivenie_ _ = choose not p(T)

but x(T) as the unknown. Then we get the condition.

(i3.2) {_; T, _(T), X(T, _(_))) = x(_'

(equivalent to (13.1)), from which we are to determine x(T) as a function of

x(T). It mm well known in the theory of differential equations that the jacobiar

We may do this as follows: We pick x(T)

and then integrate (4.9) from T toward T.
arbitrarily, set p(T) = Xx(T, _(T)),
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_t-_ = Xij(_)

where X(. ) is that solution of our canonical equations (i0.i) which corres-

ponds to the given boundary condition and _': %:_x ....

solution of eq1_tion (13®2) (in the approximate sense; considering only the

linear term in the taylor series of the left-hand side of (13.2)) requires

kn _led6e of the solution of the accessory problem_. Moreover; a solution

is possible if (usuall} also only if) det X(T) _ O. So we see that the

co n__u_ate _oint condition is closely related to the solution of the "boundary-

value problem" (13.2).

The engineering _±_ature contair_s .......... _.... +'_ .... +_ -

cerning the solution of the boundary-value problem. In effect this problem

is merely a part of the classical theory of the accessory problem. We hasten

to add that the entire theory is local. (If one had any mathematical idea

concerning the global so!u_ion of the hcunc'_ ,:<,,_-v_k',:::_ _roblem; that would be

nearly as much as a theory of the global accessory problem; that is to say; a

global theory of the original nonlinear variational problem. )

The choice of t = T as the starting point for the solution of the

canonical equations (i0.i) is quite arbitrary. We :ould have started also

at t = T. Which of these choices is more sensible depends on the prac±ica!

features of the problem.

Let us illustrate what would happen in the second case. (We let T

play the role of T.)

!2) The =._dpo.nt is completely constra_ne'Z; i.e _ [0]. Now we

must satisfy the condition

(13. 3) o, :

In this case y(T) = free. The jacobian is again given by
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(X suitably defined).

Both (13.2) and (13.3) can be expressed by a single formula with

the aid of our parametrization. Thus in the first example we have that

and in the second case

(o, y(_)) : (o, _).

In the general case_ we have

(13.4) (x(_),y(T)): (x(_)p,Y(_)p).

Thi_ gives our

SECOND MAIN THEOREM: The jacobian matrix

T

of the general variations/, problem is given by the corresponding matrix X(T).

An important reason for our parametric representation of extremals is

to have a simple expression for the jacobian.

14. Two Im_ortant Lemmas: Now we wish to investigate the necessity

of the condition (12.3).
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It is clear that if this condition is not satisfied, then the pro-

blem is not well posed. For if det X(t l) = 0 for some t I g [_, T),

then it is impossible to connect some point (tl, _l ) with the terminal

set _ extremally, i.e._

_l _ range [X(tl)].

However, even in this case it is conceivable that we might be able to con-

nect a point (tl, _l ) with the terminal set _ in some nonextremal and

therefore nonoptimal way. It turns out that this is not the case. In other

words,

[reachability of terminal surface] = [optimal reachability]

provided there is no conjugate point in the interval [_, t).

Let us now make these notions precise.

LEMMA 1. If X(to)P o = 0 for some P = Po = (0, Vo) , v° / 0,

_(t) = X(t)P ° _ 0 on [to, T) iff the boundary value problem is well posed

over the interval [to, T). [Thatis, given any state x there is a control

u(.) which connects (to, x) with (T, z), z £ _/i_]]

Proo____f.Suppose _(t) : X(t)P ° = 0 on [to, T). Then

= - F'(t)q.

This equation can be explicitly solved) the answer is

_(t) = $'(T, t)Y(T)p o.

Then, since X(T)Po = (_o' O) = O, the equation

= F(t)_ - O(t)R-l(t)G'(t)$'(T, t)Y(T)P o
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has the solution

T
_(T) = ¢(T, to)_(t o) = [I ¢(T, t)G(t)R-l(t)G'(t)¢'(T, t)dt]Y(T)Po,

t
O

= W(T, to)Y(T)Po,

=0.

W(T, t o ) is the teachability matrix_ a point (T, z), z c _ is reachable

from (to3 x) iff z - @(T, to)X g range W(T, to) (see [5]). That is_

x = ¢(to,T)(.+ z), . _ r_e w, z _ -%5.

Thus the problem is well posed only if

(14.2) range W +_= _.

now (0,vo)i _Z3.

On the other hand, (14.1) and (11.7) show that

WY(T)p ° _ _Tfq _ --- ,,k_, P'O j --

so that (0, Vo) g null space W. Since W is symmetric, this means that

(0, Vo) I range W. Hence (0, Vo) 1 [range W + _ ], and since v° # 0

we have a contradiction to (14.2). This proves Lemma i.

If the hypotheses of the lemma hold 3 we say that t is a conjugateo

(precise definition) of T. According to the lemma_ a conjugate point

is characterized by the fact that at least two distinct extremals connect

the points (0, to) and (0, T). _(t) - 0 is always an extremal; it corres-

ponds to p = O. By the lemma the extremal _(t) = X(t)p ° is distinct from

_(t)= o.



If det X(to) / 0, we may have also the case where X(to) p = 0 and

Po = (_o' 0), _o # 0. In this case the extremal _(t) -= 0 is obviously

different from _(t) = X(t)p ° because x(T) = (_o' 0) / 0. When there is a

Po with the latter properties, we say that to is a focal point (precise

definition) of T. Slightly imprecisely a focal point may be regarded as a

generalization of a conjugate point and includes the latter as a special case.

The optical intuition leading to the term "focal point" should be quite clear.

;mother definition of the = _" [conjugate] _^_* ms:±oc_ _,_ " there exist two

distinct extremals which terminate at x(t o) = 0 [and begin at x(T) = 0].

In view of our lemma 3 this is equivalent to the statement: there exists a

Po / 0 [Po / 0 with v° / 0] such that X(to)Po = 0.

LEMMA 2. Suppose that the boundary-value problem is well posed over

any interval [_, T)_ T < T. (Refer Lemma 1 for detailed statement. ) Then

there is no focal point in [_, T) if T is taken to be sufficiently small.

Proof. If there is a focal point at t = _, then there is a Po / 0

such that

x(,) = x(,)po = o.

Let _o be the extremal which corresponds to Po" In view of formulas

(.i, , o_ it is clear +_+ the perfo _ index V _lnn_ is zero

(since Xo(*) = 0).

Now we define the scalar function

(14.3) v(t, x)= Ilxll (t)

by letting P(.) be given by (10.5), where

X(T) =

• %

, YT) =

0 I 0
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It is clear that P(t) will be well defined (will exist) for t near T

because det X(T) = 1 and therefore by continuity det X(t) / 0 for t

near T. According to the theory discussed in Sects. 5 and 9, V is a

solution of the hamilton-jacobi equation corresponding to a newvariational

problem P2; P2 is the sameas the original problem P, (for which there

exists a focal point) except for the fact that the boundary surface for P2
is i/_ = ._ . Hence To is an extremal also for P2 because it satisfies

the boundary condition (trivially) for P2" So the performance index V

for Yo is 0 also for P2"

The function V defines a unique control law 3 which is linear.

Hence in P2 the optimal trajectory y_ starting at x(_) = 0 is the curve

identically zero. Along this curve the performance index is obviously zero.

By Carath_odory's lemma (see [4]) the existence of a solution of

the hamilton-jacobi equation implies that the optimal trajectories are unique.

Both Yo and y_ are optimal because their performance index is 0. We

have a contradiction to uniqueness.

This completes the proof of the lemma.

We note also the

COROLLARY. Under the hypotheses of Lemma 13 the focal points of T

are isolated.

Proof. If not_ let [to_ t l] be an interval of focal points.

Since X'(tl)Y(tl) is symmetric, we can repeat the analysis of the lemma,

choosing tI as T. Then the lemma shows that there are no focal points

in the interval [_, tl] if • is near t1. Contradiction.

Notice also that our proof of Lemma 2 implies the

PROPOSITION. If t I < T is the focal point nearest to T iu pro-

blem PI and t_ is the analogous focal point in P2_ then t I _ t_ < _n
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15. Summary: We can now state our final result, which shows that the

computational treatment of the general boundary conditions is identical with

the treatment of the special case _hen x(T) is free

THIRD MAIN THEOREM. Assume that the boundary-value problem is well

posed over any interval [t_ T) (where t c [_, T)) and that • is chosen

so small_that no focal _oi__ntexists in the interval Iv, T) (that_i__s

det X(t) # 0 on [_, T)).

Then the solution of the _eneral _roblem may be obtained using the

function V defined via (9.4) by P(t) which is given by (9.1'), where

X(T) and Y(T) are determined b_ (10.1) and (10.2). This choice of initial

conditions for (10.1) assumes that the terminal surface consists of the first

r of the n (ortho_onal) coordinate axes. The function V so computed

satisfies the relevant hamilton-_acobi equation for all t ¢ [_, T); if

t = T, then V(T, x) = llxll_ on

The statement: "the boundary-value problem is well posed over every

interval It, T)" is satisfied_ e.g., when the system (3.1) is completely

controllable over every such interval. Our italicized statement is in fact

equivalent in classical terminology to the statement "the problem is normal

in every interval".

.......... j can be carried out without _c_ an as_ptionj as follows.

Suppose the problem is well posed merely with _+_ to the f_xed

interval [_, T). Consider the linear space P(t) of allpoints (tj x)

from which _ may be reached at t = T. By definition of "well posed at

t = _" we have that P(_) = _. But for t >_ P(t) may be a proper sub-

space of _ .

By the theory of controllability, it follows very easily [lO] that

Dim P(t) is a piecewise integer-valued function, which cannot be decreased as

t -_. Moreover 3 there are but finitely many intervals on which this func-

tion has different values (because _ is finite-dimensional). Hence let us
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subdivide [_j T] into maximal disjoint intervals on which dim r(t) = constant.

Each int_rval is closed on the left _nd open on the right. Werepeat the

entire analysis (which is quite independent of the specification of the initial

state x(_): all of our analysis holds for all initial states for which the

boundary-value problem manessense) for each interval. Putting together the

pieces, we get a result analogous to the third main theorem.

The possibiiiiy of s_ch a prt,cedure was pointed out a long time ago by

Carathlodory [ii], but his formulas are not explicit, contain somemistakes

(rectified in Chapter J._of [2]), and are not easy to read. Our present treat-

ment is similar to Caratheodory's exposition of the theory of "second variation",
[2j Chapter 15 ] which was concerned solely with the simple variational pro-

hlems (i' = 0_ G = 2), As the reader has seen, the Hamilton-Jacobi-
Caragh_odory-Bellmanapproach can give us the solution of the most general pro-

blem, and has the advantage in addition of yielding a single formula, (9.4),
which covers all computing problems.

It is hardly necessary to point out that the theoretical part of our

investigation is completed by applying the theory of the accessory problem

to the formulas developed in Sect. 7. Most of the classical sufficiency proofs

of the calculus of variations are done in this style. Weomit the details,

since they have no bearing on the computational problem.

16. Computation: The transition matrix for (i0.i) can be computed

easily only when all matrices are constants. In that case

(16.1) e(t, x) = exp[(t - x)Z]

whe re

The program is supplied with (16.1) and then computes P(t)

the four submatrices of e into one of the formula (10.5).

obtains a stepwise solution of the riccati equation.

by substituting

In this way one
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with
At each step P is symmetrized before proceeding by replacing it

+ P'(t)
2

$ymmetrization is absolutely essential because otherwise uncontrollable

roundoff errors may accumulate in the antisymmetric part of P(t).

The input to the program consists of the matrices e, R-1G3 a

symmetric P(v), a sampling period T at which intervals P will be com-

puted_ a convergence criterion number c 3 a final time TF, and various

printing codes.

The problem is terminated in one of two ways. Either the final time

TF is reached or the convergence criterion is satisfied.

The convergence criterion is that

n

y IPii(t+ - Pii(t)l
i--i

n

Z IPii(t + T) I
i=l

be less than the input number _.

When P(t) is computed, the matrix

K(t) = R-IG'P(t)

specifying the control law can be computed and printed. Print controls en-

able one to print K or P at every N steps and at the final step.

17. Checks: A) The Program was run with

F ____

m

o6 z6
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where 06 = six dimensional zero column vector and 16 = 6 X 6
matrix

G = i Q = H'H = 7 x 7 matrix

061
p

R = [0.6079]

P(0) = 0.6075 I,

T = - 0.2.

identity

This was iterated for ten steps and the result compared with a hand-

computed result expressed exactly in four place decimals. P appears in Fig. 2.

The hand-computed P is:
D

p

m

0.2025 0.4050 0.4050 0.2700 0.1390 0.0540 0.0180

0.4050 1.4175 2.0250 1.7990 1.0800 0.5130 0.1980

0.4050 2.0250 3.8475 4.1850 3.1050 1.7280 0.7650

0.2700 1.7550 4.1850 5.8275 5.4450 3.7170 1.9680

0.1350 i. 0800 3.i050 5.4490 6.6 375 5. 8410 3.87 30

0.0540 0.5130 i. 7280 3.7170 5- 8410 6.8 319 5.9178

0. 0180 0.1980 0. 7650 i. 9680 3.87 30 5.9178 6. $62 3

m

B) The Program was run with
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H = [l o']6

G = R-1 = 7 X 7 zero matrix

Q = 2.0250

P(o)= - 0.2T

This was iterated for ten steps and the results compared with a hand-

computed result which was expressed exactly in four place decimals. P

appears in Fig. 33 K is of course zero. The hand-computed result is:

P = 10.

B

2.69 35 -!. 9 759 i. 2990 -0.6720 0.2790 -0.0900 0.0180

-1.9750 2.2869 -1.9710 1.2870 -0.6480 0.2430 -0.0540

i. 2990 -i. 9710 2.2725 -i. 9 350 I. 2150 -0.5400 0.1350

-0.6720 1.2870 -1.9350 2.1825 -1.7550 0.9450 -0.2700

0.2790 -0.6480 i. 2150 -i. 7550 I. 8225 -I. 2150 0.4050

-0.0900 0.2430 -0.5400 0.9450 -1.2150 1.012 5 -0.4050

0.0180 -0.0540 0.1350 -0.2700 0.40 50 -0.4050 0.2025
m

c)

ing

To obtain a problem whose answer we knew for all time 3 we ran the foll+_

F = diag (.1, .2, .5, i, 2)
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H'QH =

m m

.1 .2 .3 .4 .5

.2 .2 .4 .5 .6

• 3 .4 .3 .6 .7

.4 .5 .6 .4 .8

•5 .6 .7 .8 .5

GR-IG ' = 5 X 5 zero matrix = P(O).

P was computed at various times, we show in Fig. 4 and Fig. 5 the

computed results at t = .75 and t = 3.7. The answers are accurate in

the seventh significant figure. The correct results are

(t) e(ki + kj)t _ i

Pij = qij k i - kj "
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CHAPTER VIII

THE SAMPLED-DATA RICCATI PROGRAM

i. Description of the Problem: For many ptLrposes 3 the variational theory

presented in the preceding chapter is more conveniently applied in discrete-

time. This is the topic of the present chapter.

2. Theory: Consider the linear dynamical system

(2.1)
xt+ I = @txt + Ptut _

whe re

t = integer_

%= (p×l)

®t = (P × P)

rt = (p × q)

ut = (q × l)

the state vector 3

transition matrix 3 a function of

input matrix_ a function of t_

the control vector.

t 3

Such a system may arise in a variety of ways. Let us assume only

that we are given a linear system 3 that is @t and Pt are independent

of X t 0 r u t .

The control problem we will consider may be stated as follows.

d
Given the desired value x of the state vector_ manipulate the

sequence of control vectors [ut] in such a way as to bring the state
d

vector xt rapidly as close as possible to x _ and then keep the state
d

vector near x at all times.
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Let Q be any nonnegative definite symmetric matrix. As before

llx - xdllQ will denote the quadratic form (x - xd)'Q(x - xd). This
pseudo-metric (metric if Q is positive definite) will be our definition

of the distance between states. (Wedeviate intentionally from the point

of view taken in Chapter VII in order to emphasizecertain additional as-

pects of optimization. )
o

By static optimization we mean selecting a constant value u of

the uu_ru1 vector giving an equilibrium state x* _ (i) lying as close

d o
as possible to x . Then x* and u are characterized by the relations

(2.2) x* = ¢x* + pO

and

Nx*- xdll = minmum

(We have assumed that ¢ and P are independent of t_ because otherwise

the problem would not be well defined. )

Such a u° exists_ but knowing it may not provide a complete answer

to our basic problem_ because the equilibrium state x* may be unstable.

Consider the scalar system

xt+ I = 2x t + u.

d o
Assume x = O. Then u must be zero. But no initial state will go to

zero if no control is used. Even if the initial state is x° = O, because

of the instability of the system small perturbations about zero will even-

tually become arbitrarily large. So the equilibrium state x* = 0 will

not be maintained in practice. Note also that even if x* is globally

asymptotically stable, there is no assurance that the approach to x* will

be in any sense "rapid".
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Hence static optimization is inadequate and we must consider

dynamic optimization. We proceed to formulatc the latter problem.

A performance index for the system (2.1) may be defined as:

t +T
O

(2.3) _T,t [xt ] = _
o o t=t +i

O

[Hxt -x JIQ+ JJut_iH],to, t, T = integers.
t

Usually we normalize the time scale so that

t O as an argument of _i ).)

t =0
O

(and then we suppress

We now define our control problem to mean that the control variables

ut be selected in such a way as to _linimize (2.3). This is what we shall

mean by dynamic optimization.

We must find a sequence of vectors (ut] t = 0, ..., T-I for which

(2.3) assumes its minimum. At first sight it would appear that to obtain

the optimal set [ut] we must optimize (2.3) with respect to all ut

simultaneously, which is an elementary but very complicated job_ at least

for large T.

Fortunately 3 we can achieve a decisive simplication by making use of

the following intuitively obvious but convenient observation emphasized by

R. Bellman in the 1930's (but known at least since the 17th century).

PRINCIPLE OF OPTIMALITY. An o_timal sequence [ut] of control

variables has the propez'°c___.t_h__ whatever the initial tare x ° and the
0

initial choice u of control vectors, the remaining terms
O .....

o O

Ul, u2, ... must constitute an optimal sequence with respect to the state
o

xI resulting from the choice of uo.

Using the Principle of Optimality, we can obtain various expressions

for the theoretical study and practical determination of the optimal control

seqt_nce. (Methods derived from the Principle of Optimality are known by

the generic name of dynamic programming. Of course, dynamic programming is

simply the discrete-time counterpart of the Hamilton-Jaeobi theory discussed

in Sect. 5 of the preceding chapter. ) The reasoning used here and the
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equations obtained are for the most part but slightly different from their

continuous-time counterparts in the classical calculus of variations.

We observe first that (2.3) can be written in the form:

+ II%1@+_[x°]= [!!xlxall_l l T_l[Xl]]•

oix°]Now let T

optimal sequence is used.

a functional equation for

be the value of the performance index when the

I_voking the Principle of Optimality 3 we obtain

o
T"

(2.5)

o [x° ] = min ix° ]T T
uo, uI, ...

o ]]
= min [!!x i - xCt!12 + Ilu 11_2+ _ _ [xl "

u _i °_i ±-J-
o

This functional equation is solved by an iterative procedure.

o
The successive optimal (minimum) performance indices t are connected

by recursion relations:

(2.6)

i [xw-1 ] = rain [llxT - xdJl% + I1%_roll<],
U__m

o % ok+l[XT_k_l] = min [llxT_k -xall + k[X_-k]]"
UT-k-i -k

Substituting (2.1) into (2.5) we have

(2.7)
l[XT_l] = min [ll_T.lXT_ 1 + rT.l__l- xdll% + I1__111<].

U__l

From the theory of the pseudo-inverse, we know that the minimum of

this expression is attained when
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(2.8)

o = , • d
UT_i - (rT_IQ_PT_i + RT)$(F__IQT(¢T_iXT_i - x ))

d

= - KoXT_ I + Jox ,

where _ denotes the Penrose-inverse of a matrix.

Substituting (2.8) into (2.7)3 we get

whe re

(2.9)

| •

Pi = (¢T-i -rT-iKo) q_(eT-i -rT-iKo ) + _RTKo,
!

ui: - (_-_-r_-_Ko)%(_-Jo - I)+ _Jo,
!

si : (r__Jo- l)%)r__1% - I)+ Jg_Jo"

Now we claim that

k

We will prove the assertion by induction. The statement has been

already shown true for k = i. We assume it is true for k - i. Using

(2.6) we write:

°[XT_k] = min {llXT+l_ k -xdll 4 + llUT_kli_+l_kk UT -k +i -k

2 - + llx__llsk_l).+ IIx_+i_ktlPk_l 2x_+i_kUk_lx(i
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Applying (2. i), this becomes

oExT.k]_-rain[II¢T__xT_k + rT.__k - xdll_
k _-k _+l-k

+ ll__kll_
T+l-k

2

+ ll__kx___+ r__kUT_kllpk_l

, - llxdllSk_l- 2(____ k + r___.p uk ix_ + ].

The minimum of this expression is attained when

0 = !%__ - [r___(Pk_1 + %__prr__ + _+i__]_

× [r'__k(Pk_i + _+l.p®r__xr_k -r'r._(uk_i + %+l_pxd]

d
_-_ __ix___+ J__ix.

o d
The fact that __u_-k is a linear combination of ___x_-k and x

completes the proof, and we can obtain the following recursion formn]ae

for Pk, Uk, and Sk"

\

+ K_._R__I_._

!

- Uk = (¢T-k - PT-kKk-i ) [(Pk-i + %+i-k)rT-kJk-i - (Uk-i + _+l-k )]

- __iRk_iJk.l

!

Sk = (DT_kJk_l - I) _+l_k(PT_kJk_i - I) + J__iRT+l_kJk_l

! ! ! !

+ Sk_ 1 + Jl__iPT_kPk_iPT.kJk_l - J k_IPT.kUk.1 - Ul__iPT_kJk_l.
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Considerable simplification is possible after expansion and use of

the pseudo-inverse lemma, A_AA = A N.

(2.11)

(2.12)

P_ --®_-k[(P_i + %+i-_) - (P_-i+ r Jr'' - %+l-k)_-__-_(P_+I+%+1-_)

+R

!

(2.13) Kk : [r____l(P_ + %__)r__k_1 +__k]_r__k_l(Pk+ %_k)____l

(2.14) J_: ____l(P_+ %._)r__k_1 + R__k]_r____l(U_ + Qn__).

From the formulae for P, and U, we see that P = U = O.
0 0

Although the preceding manipulations have been rather tortuous, we

now have quite explicit formulae for computing the control. We observe

the important result:

Under the specified assumptions the optimal control vector is a

linear (but time-dependent) function of the actual and desired states of

the system.

Examination of the derivation shows that the control to be used in

minimizing 'J'-T [Xo] is the sequence

o d
% : ___lxo+ __lx
o d

uI = _ __2Xl + JT.2 x

o d
UT_ k = _ __iXn_k + Jk_l x

o d
%-1 :- %X__l+ _ox •
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Note that the subscripts t of x and u indicate the actual time_ while the

subscripts k of K3 J3 P3 etc. are "time to go" until T.

At this point it is appropriate to discuss the very important case

where we wish to minimize the performance index over an infinite number of

steps.

From the derivation we see that PI is computed using the transi-

tion relations and weighting coefficients applicable to the last interval

cor_idered in the performance index. But this has no meaning when we are

optimizing over an infinite number of intervals. Taking a practical point

of view_ we choose some T which in relation to the system parameters

seems to be sufficiently large to allow the system to come to rest long

before t = T. If the system is periodic over the entire range of optimiza-

tion and completely controllable then we would expect that _ would tend

to be periodic as k-_ T.

If the parameters of the system and performance index are constant,

we have a much simpler situation. In this cas% after using the initial

controlj we have exactly the same minimization problem since we must still

optimize over an infinite number of steps. Thus we would expect to obtain

in the limit k -_ _ a constant value of the feedback matrices K and J.

d
If the system is completely controllable and x is a possible equilibrium

state of the systemj then Pi and Ui approach limits and this expectation

is fulfilled.

Under these conditions we can generalize further. Let us assume
d

that x d _ 0 and asymptotic approach to x is desired. This is impossible

d
unless x is in the range of (I - @)-_. Even then if R / O, x will

d
not approach x ; but a balance will be reached minimizing the sum
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d
Thus asymptotic approach to x implies that we must ignore the

r_ ¢)x dcost of cont_'ol because as x _x 3 u _ (I - _ 0 = const. It

seems therefore that under certain circumstances it might be desirable to

use a performance index of the form

whe re

d r_u -- (I - ¢)xd.

If we do this 3 we find that

u = - Kx + Jxd + Lud,

where K and J are defined above and

L --[r'(P+ Q)r]_r'm

with

M = - (I - ¢' + K'P')-I@'(P + Q)r[r'(P + Q)r + R]_R.

There are certain differences between the discrete and continuous

control problems to which attention should be drawn. These follow mainly

from the fact that in the discrete case R may be singular. For instance 3

in order to take the state of a continuous system to the origin in finite

time the ordinary q_dratic performance index method cannot be used; in-

stead the "Minimum Energy" trajectory is utilized. The difference between

the two riccati equations is solely a matter of terminal conditions, it

is true; nevertheless special treatment must be used. In the sampled case_

these problems do not arise. If s is positive definite_ Q and R
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zero matrices# and the system completely controllabl% P will be zero

after at most n (dim x = n) steps. (See Sect. 8 of previous chapter for

notations. ) This is the so-called "Dead Beat Control".

Physically the requirement that control be piecewise constant re-

stricts the system response. In the continuous problem_ sufficiently

large control can makethe state error arbitrarily small. This is no longer

true in the discrete system. In the continuous system sufficiently large
control can take the system to zero ("MinimumEnergy Trajector") in arbitrarily

small time. In the discrete system a certain numberof sampling instants

is required and no amount of extra control can reduce this number.

3. Computation: For the momentwe will consider only the computation of

Pk and Kk.

Let us define

P_ = Pk + QT-k;

then equation (2.11) can be written

The_ by (2. _j___

= ![rT-k-l  -k-1 +

At the risk of being pedantic_ we will outline very carefully the

phasing of indices in P and K.

Po is always zero.

control

PI is the value of the performance index obtained by using optimal
o

uT over the last interval only.
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= PI + 9-i 3 namely PI plus the weighting matrix at the

(T-I) th point.

o = - and J are computed using _o _%-i KoXT-i + Joxd where K O o

rlot 2"

--PT + Qo, where Qo has notKen defined(see(2.3)).This is

purely a computational problem and merely requires that some matrix Qo

be provided for the program.

Pk = _ - q-k' so if the performance index matrix Pk is required,

_-k must be subtracted from the program output _.

If comparisons are made between the discrete and continuous perform-

ance indices 3 we must use the redefinition

T

(3.m) _[x°]--k=l_'(tk- tk-l)[l]xk- xdll k+ li -lll I"

Computation of Uk does not fall into the pattern given. However

if _ converges to K and Uk to U then from (1.9)we have

u= (®-rK)'(u+Q).

Since we have K available we can compute U and thus J. Notice

d
that although we need not have assumed x constant our program can obtain

d
J only if U converges 3 which probably will not occur unless x is con-

stant.

The form of the equation used in the machine is described in

Chapter 13 page ii and Fig. i.

Some transformations are l-cquired. In terms of Chapter 13 Fig. 13

we let
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FMACH= _SYSTEM

POoH = _M

GMACH = p'SYSTEM

RMACH = RSYSTEM

Indexing of parameters in a nonstationary problem must be handled

by proper programming of ASP, see_ for instanc% Problem C in Chapter ]_.

Under certain circumstances

relevant theory is :

P* will be independent of time. A

THEOREM: _Let R = 0,

Then l_oP(r'l_or)-_ 'i_o = i_o_

r'_r be nonsingular and rank r'_r = rank P*.O O

implying that _ = Q = I_o for all k.

that P

Proof. I_o = Q = AA'_ P'A nonsingular (we make the trivial assumption

has maximal rank)_ then

_or(T'_j)-ir'Po*

= AA'r(T'AA'T)-_r'AA= AA'= _ --Q.

An important special case occurs when r

rank Off'= rank Q.

An analogous result states:

is a vector and

THEOREM: _If F is nonsingula__r _ = q.

Proof. Consider I_o- l_or(T'Po*T)_l_'l_o. Since

multiply by r' and r. Then

r is nonsingular_

r'P*r - rmor(r'Po*r)#r'mor;
O

by the first pseudo inverse lemm% this is the zero matrix.
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All of these results are alike in saying that if k states are

penalized and there are k independent control variables which can inde-

pendently "reach" the k weighted states 3 then the performance index is

zero. Clearly if R j 03 this cannot be true.

PSED0 in SAMPLdoes not iterate. It uses P1 which is ordinarily

Therefore unless R is a scalar P1 should be changed by PIZER
or i0-7.

i0-2 •

to something like 10-6

4. Checks: Input conforms to Chapter I notation, not to the system (2.1)
described above.

F

m

0 i 0

0 0 0

0 0 2

G !

m m

0 0

2 0

0 1

Q

m

3

1

0

M

i 0

i 0

0 i

R

m

1

1

m

w

1

2

m

K(O), P(1), K(1), and P(2) appear as Fig. 2, 3, 43 and 5 and are

correct to the given number of places.

5- Filtering Theory: In Sect. 2 we have set up a control problem for a dis-

crete deterministic system and derived the appropriate equations for the

optimal feedback and the minimum performance index. Through the Principle of

Duality we know that these same equations represent the solution of an

optimal filtering problem.

For pedagogical reasons, however, we prefer to derive the equations

for the optimal filter ab initio.
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Consider the system

(5.z)

xt+ I = Ctxt + ut

Yt = Htxt + vt

whe re

t = integer

xt = the state vector

Ct = transition matrix, a function of t

ut = an element of a vector-valued independent

gaussian random sequence

Ht = (q X p) output matrix, a function of t.

vt = (q X i) an element of a vector-valued indepen-

dent gaussian random sequence.

We assume that Eu t = 0, Ev t = 0, Eutv_, = 0, Eutu _ = _Stt , and

Evtv _ = RtStt,3 where Qt and Rt are respectively (p × p) and (q × q)

matrix, functions of t; we also assume that [¢', H'] is completely con-

trollable, i.e. (5.1) is completely observable.

The filtering problem we will consider may be stated as follows.

Given the values of the output at T times [Yo 3 YI' ...3 YT]_ de-
^ ^ 2

termine an estimate XT+ I of XT+ I such that EIIXT+I - XT+llI is minimum.

This statement has a formal resemblance to the usual least square

fitting problem which may in turn be posed as a problem in orthogonal pro-

jections in an inner product space (see for instance the Orthogonal Projec-

tion Lemma in ChapterlV). Let us digress to show that this resemblance is

more than formal.

Consider the real-valued random variables Yo' YI' "" "3 YT" The set

of all real linear combinations of these form a vector space _. (Remember

Yt does not denote the sample obtained at t but the random variable at t
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that is the set of all possible samples at t with some distribution func-

tion. ) Then any linear combination of the Yt is also a random variable•

Furthermore, in this vector space, an inner product may be defined

(Yt' Yt ') = EYtYt '" But now that we are in an inner product space we can

apply fourier analysis to our problem. The orthogonal projection lemma
^ 2 ^

from Chapter_V tells us that Ellx_+l_ - _X_+llI will be minimum if
^

is the orthogonal projection of XT+ 1 on YT' provided we restrict XT+ 1

to be a linear functional on v

It is interesting to have the following theorem which tells us that

the orthogonal projection on Y_ in the case we consider, actually gives

the minimum value of  ,llxT,1 -  ,111a.

THEOREM: Le__t_ [xi] , [yi] be random sequences with zero mean. We

observe Yo' Yl' "''' YT" If eit_her

(A) the random sequences are gaussian_ or

(B) the optimal estimate is restricted to be a linear function on
^ 2

and the function to be minimized is EIIXT+ 1 - XT+ll I then the optimal

estimate of XT+ 1 _iven Yo' "''' YT is the orthogonal projection of

on YT"

In the sequel, we shall be dealing mainly with vector valued random

variables. In that case we have only to remember that YT is an m(T+l)

dimensional space and _+l is m(T+2) dimensional. This is actually the

only novelty to the analysis -- at each step we increase by m the dimen-

sion of the space into which we are projecting. The notation to be used in

this case will be explained at each step. F_rthermore we will minimize not

^ 2 ^ 2

just EIIXT+ 1 - XT+ll I but even E(XT+ 1 - XT+l) i that is, minimize each

component of the error Ellx - _II2 separately. Let us assume that the [yt }

have been orthonormalized to [¢t]. In R m we mean by this that

(ct3 ct') = Stt' However the jth component c of et is a random vari-• tj

able and it is these that must be orthonormalized 3 i.e. Ectjct, _ = 5tt,k _ = 0

unless i = j = k = _. This is conveniently expressed by writing EctE t, = 5tt,I m.
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(5.2)

int o

(5.3)

Purely algebraically 3 we know that

T

XT+ 1 = 7 (XT+I) , ct)_t.
t=0

By this formula we mean that every component of XT+ I

T

= Z ffv _ _t)_t.(_T+I) J t=0 _ l_v _ + Jj_

is projected

Since et

(5.3')

is an m-vector, we can write (5.2) more explicitly as

T m

^ = z z ((Xw+l)j, _tk)_tk(XT+l)J t=0 k=l

which has a clearer representation as

T

(7.4) x_+z = x _(x_+z_)ct.
t=0

A

In other words_ XT+ I is a random variable expressed as the sum of random

variables et with coefficients determined by the expected values

Using (5.1) in (7.2) we get

T

XT+ I = Z ((¢TXT + _), et)et
t=0

T T

= CT Z (XT, et)et + Z (UT, ct)¢t).
t=0 i=0

Since [ut} is uncorrelated, we have (uT, et) = 0 for

i = 0, ..., T, by (5.1). Thus

A A

_+l = %[xT + (xT'_T)_T]"
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Nowwhat is _T? It is the componentof YT orthogonal to YT_I3
#%

normalized. Let us observe that (YT - _I_T ) is orthogonal to _-i" We

know that

#%

_,(xT -_)y_ --o t = 13 ..._ T - i.

A

so _(mT- _)Y_ = 0 and _(_T- roT)y4--Ev_y_= O, t = l,...,T-l.
And since (YT - Hx%) lies in YT it must be a multiple of £T" In the

usual analysis where YT is one-dimensional, we would say a scalar multiple,

but here we can say only that

(Y_- _T) = %T,

whe re A is nonsingular.

J%

We have 3 therefore, shown that xT is generated in a system

A A

_+i --_ + _(Y_ - m_).

Now let us determine _.

We know that XT+ 1 = XT+ 1 - XT+ 1 is orghogonal to

discussion above we know that this means

YT" From the

E%+Iy _ = 0 for t = i, ..._ T.

He nce

®ex%y. - + - =o.

Again we have

.(_, yt): o
v_vt --RT_tT,

A

(UT, yt) = 0 for t = 0, ..., T. By optimality of XT,

for t = 0, ..., T-I. Because VTX _ = 0 for all t and

we have EvTY _ = R T. So we finally arrive at
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(_._)

We_no__rom_ourierseriest_at(_,x_)=O.

_x_v_=ExTv_+ExTv_

But xT is orthogonal to CT ' so

(_' (YT- H_T)')--o

-C'x_,(_(x__I+v_

= _v_ = o.

Let us denote

PT+I: % " KN_N)PN(¢N- Y_N_N)

- (% - _N)xNv__

and attempt to find a reeursion scheme for

!

+ (% - _NHN)_NuN

PT

After a similar reduction we obtain

P n=l = CN[PN - PNHNCHNPNH'N + RN] ]$HN-PNCN + QN

KN = CNPNH_[HNPNH_ + RN]_

xI = ¢ox + Ko(Yo - HoXo).
0
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Since (5.5) must be satisfied exactly, not in the least squares

sense 3 it is necessary to justify the use of the pseudo-inverse in the

formula for _. The justification is that a solution always exists since

Range [_PH' + R] ) Range HP

provided P and R are nonnegative definite symmetric. This assertion is

proved in the appendix to the chapter on approximation of an impulse response.

A

These formulae require initial conditions P and x which may be
O O

otained for instance as follows.

By our assumption of complete observability

[H'_ ¢'H', ¢'2H', -..3 @'n-iH']

has maximal rank. Let q be the number such that

A' = [H' ¢'H' ¢'q-iH']
3 • "'_3

has maximal rank.

Then

y

Yo

Yl

yq-i
m

=Ax +_
o

where
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m

V
0

vI + Huo

va • H®%• Hu.z

v3 - H¢2Uo * H¢_, H%I"
O__r primary concern in an initial estimate

biased, i.e.

A

X
0

is that it be un-

s(x° - _o) = 0

E(x ° - KY) = E(I - KA)x ° - EK_

: _(z - m)xo.

In order to guarantee that this is zer% we must choose K = A _.

It is then possible to compute %_o = A_E_'A_" and, letting

X :
0

and

p = ®,kA#E_#®,k
0

we are ready to start our recursion scheme.

This brief analysis brings out the importance of an unbiased initial
A

x since the derivation of the minimum variance estimate requires the pre-
O

viols x to be unbiased.

Is an example to help those who are confused by the outer products

of Eu_' _an vectors, e.g. Exx', which appear to be inner products in the

probabL r space, let us point out the following precise analogy.
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Let f' = (fl' ..-3 fn ) be a row vector of n functions which are

Lebesgue square integrable on [03 2w]. We desire the mth Fourier approxi-

mant for f. The easiest way to write the solution is by representing the

coefficients of the Fourier series as an outer product:

^ i 2_T i m 2w cos

f = _ 0 _ fdt + i=l_' cos it)dr 3 S0 f(sin it)d .
- s in i

The significant property here is that in both the example and the

problem itself there is not merely a minimization of

A

-  '112 or  ,llx - xlla

but minimization is taking place component-wise'

minimizing each

That is, we are actually

fi )2 2- and E(_ - x)i i = i, ..., n.

Thus each component of x is projected into the probability space and at

each step more than one new dimension is being added to the space into

which we are projecting. In the Fourier approximation we are projecting

each component of f into the function space spanned by

[cos it, sin it} i = O, ..., m

and at each step we add two to the dimension of the fitting space. (It is

not universally known 3 but the mth Fourier approximant is "best" in the least

squares sense. )
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No
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No
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i+lo

EPjj I

' 'J O_[i+l_i I
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CHAPTER IX

COMPUTATION OF TIME HISTORIES

i. Description of the Problem: The entire manual is concerned with finite

dimensional linear dynamical systems. That is_ processes determined by

linear differential or difference equations. This being the case, one of

the most important problems is to obtain the time history of the state.

As we have seen in Chapter IIj this involves computation of the

transition matrix -- ordinarily a very straightforward process. In this

chapter we shall consider several numerical difficulties which can arise.

In general these belong to two categories: poor conditioning and non-

stat ionarit y.

ASP has two formats for displaying transient behavior. We will

illustrate both of these and discuss their respective virtues.

2. Theory and References: Theoretical background for this material is

contained in Chapter II and Acrivos, see 3.B) below. Acrivos is concerned

with discrete systems but in the digital computer we are always constrained

to discretize so that much of this material is pertinent to both continuous

and discrete systems.

We shall now consider several distinct problems (A3 Bj C below)

to familiarize the reader with techniques which are repeatedly used in later

applications.

3A. The Specific Problem: we begin by computing the transition matrix of

(3A.I) _ =

0

x_

-_- O!
l0 _i

m

¢(t) =

m

7f

cos _0t sin _0 t

- sin _0 t cos _0t
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In the computer we have no method of functional expression, so we

must compute ¢ at selected points in time. For convenience we ask

for printout at fixed intervals, say, T = -5.

4A. Equations and Procedure: We will compute

.SF
¢(-5) = e

and then use the relationship

= ¢k(.5).

5A. Results: The ASP program used to compute such a transiton matrix may

be seen in Fig. 1. Results are good, as would be expected in such a

trivial problem. The errors are larger than can be legimately blamed on

the fact that v/10 can not be accurately entered in the machine. For

instance _ the 4rror in sine at k = 10, where the argument of trigono-

metric terms should be V/2, is .24 • l0 -6, but the errors in v/10

should be less than 1 • l0 -8 and the derivative of sine at this point

is nearly zero. So it appears that the errors are largely accumulated

c omputat ional errors.

The rather large sampling period makes it difficult to check phase

precisely. Nevertheless it is possible to say that these are genuine

errors in the computation of ¢ rather than phase errors caused by incorrect

values of the argument. In the first place 0.5 enters the machine exactly.

Secondly_ the errors increase linearly with time and the value of the deter-

minant decreases linearly. If a phase error were contributing the cosine

term would not have errors increasing linearly with time and the determinant

would remain constant. Notice that there is an extremely small phase error

as measured by the sine terms being nonzero.
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t _ element error determinant error

5

n

•5588. i0-6

-.99999976

n

.99999976

•9988-10-6

•24" 10-6 •5" i0-6

5o

i

-.99999796 •5476" 10-6

-.99999756

2.43" lO "6 4.8. ]0 -6

i00

m

•99999513 -. i051" i0 -5

.99999513

4.87" lO-6 9.7" 10-6

200

.99999024 -. 2023- 10-5

.99999513

9.75" i0-6 19.5" 10-6.
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Oneinteresting aspect of the computation was that throughout this

fairly long transient the numberswhich should have been equal were equal.

6A. Numerical Considerations: Observe that the previous F matrix was

in good form for computation. If we take the same problem and change only

the units in which the components of x are expressed, we could obtain

the mathematically identical system

m m

lO6
0 YO"

• lO-6 o
-Yo

y, ¢(t)=

cos rO t 10 6 sin _ro t

7r 7r
- 10 -6 sin rO t cos TO t

In this case .5 IIFII> i0 so T will be halved until __ iIFil< i0

(see Chapter If) and the exponential squared k times. In t{is example

k was 14 and T was _ _ 3-i0 -D. Because of this all the signifi-

cance was contained in the sine term since the cosine to eight decimal places

was one. This seriously affected the accuracy. For one thing notice that

terms which should be equal are not precisely so.
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t ¢ element errors determinant errors

5

D

.2608.lO -7 .99770785 •1o6

•3353" lO -7

•22.10 -2 .44.10 -2

5O

m

-.97731353 •2617

-.2647"10 -12 -.97731354
m

2.2.10-2 4.4" 10-2

i00

•95514177 -.5332

.5542.10 -12 .94414181

4.4" 10-2 8.8.10-2

200

•91229575 -i. 123

-.135' 10 -12 .91229574

8.8" 10 -2 17.6- lO -2

Not only does this cause loss of accuracy but it also wastes time in

the exponential routine. This problem is a very serious numerical one, it

is difficult to tell whether a number is small because it expresses an unim-

portant coupling or because the system is given in a poorly chosen basis.
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In this case (70) • 10 -6 is vital to the system although it is much smaller

than the other matrix elements. Usually we will try to equalize elements as

much as possible by using diagonal transformations. No more complicated

transformations are attempted as a rule.

7A. Remarks: In this simple case where we know the transition matrix_ we

can consider the problem to be discrete and load 9(.5) into the machine.

Clearly this is the most machine-efficient process as it avoids the exponen-

tial computation. But it means also that the programmer must compute sine

_- Since the last step is laborious 3 it is better to load F into the
20"

machine and let it compute ¢(.5).

Another decision to be made when computing time histories is whether

or not to use TR_I. TRK_I cannot be used with nonstationary systems.

If a complete homogeneous solution is required TRi_I should not be used;

it is inefficient. If a complete solution_ including control variables is

required TRK_I should not be used if n _ 7. In fact the use of TRK_I

should be confined to the case where only one or two initial vectors are to

be considered and the number of outputs is less than seven. A drawback of

TR_I is that it has only a four-decimal-place print format; if the system

is well-conditioned this should not be a serious objection. In programmed

tz'ansients 3 however 3 we can compute in a wel_-_amt_on_ basins and _t_a_s_

form for printing with no accumulating error due to poor conditioning. Clearly

this cannot be done in TRNSI.

To cut down on the paper volume of output 3 we did not use the Fig. i

ASP Program_ but instead that appearing in Fig. 2. This presents the output

in a "packed" form which uses the output routine_ and hence writes a new page

less frequently. Since Fortran uses blocked output 3 there is no significant

saving of machine time 3 and it makes output somewhat more difficult to read 3

but the factor of i0 decrease in pages is worth come inconvenience.
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3B. The Specific Problem: As a second example let us consider a system

given by Andreas Acrivos 3 "The Transient Response of Stagewise Processes"_

Jour. SIAM, 4_ (March 1956):

(3B.1) i =

m

0 435-21 355"54

-2.0892"10 -2 -2.4507 0.6577

-0.0386"10 -2 1.4507 -2.7634

x +
!

0 U.

I

01
B nl

Notice that the units (of physical quantities) have been poorly chosen.

We can easily transform to the system

(_.2) _, =

0 4.3521 3.5554

-2.0892 -2_507 0.6577

-0.0386 1.4507 -2.7634

-- m

y+ 1
i

0 u.

0

using the transformation

(3B.3) y =

1

0

0

0 0

100 0

0 100

We will run a transient response of the system to u = i0. in both

the transformed and untransformed system to analyze the effects of the trans-

formation. In addition we will obtain a few points of the frequency response¢

using the transformed system (3B.2).

The eigenvalues are given as

k I = - 3.7778

k2, 3 = - O. 7180 -_ i3.0179
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maki_ the shortest time constant about .27 and the largest about

Let us use a print interval then of .05 and a final :time of

4B. E_uations and Procedure :

= ¢(.o5),

To obtain the transient response, we

0.05

r = f ¢('_)dT
0

1.4.

7.%

let

and compute

x (.05(k+l) ) = m(.05k) + ru.

To obtain a point on the frequency response, we enlarge the system by

a harmonic oscillator feeding into xI and run the free motion. After all

transients have decayed, the amplitude and phase may be calculated.

r

1o 4.352i 3.5594 i o

-2.08::e -2.4507 O.6577 0 0

-0.0386 i.4507 -2.7634 0 0
I

0 0 0 0 o) l

I0 0 0 w._ 0_
m

The program used to do this appears in Fig. 4.

The transient response could also have been computed(probably a little

less efficiently)by this same method, using a fourth order system (adding an

eigenvalue = 0).

_B. Results: If we consider only the particular solution, this appears to

be an ideal sit'_tion in which to use TR_I. We need only one vector solu-

tion of three components and the solution provided by Acrivos is accurate
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only to three significant figures. However3 we wish to compareresults obtained
for sysbems(which is (3B.1) and (3B.2)3 so we will use the program in Fig. 3

(which is virtually the sameas that in Fig. 2) in order to obtain more signi-
ficant figures in the output.

There w_svery little difference in the computation using scaled and

unscaled values, both were accurate to the nunber of significant figures
given by Acrivos. At t = 7.75 we had:

x transformed

m.59o852-]_

-i.5968528

-o.86253438

x untransformed

1.59o8545

-1.5968528.1o -2

-o.86253363.1o -2.

X

The correct results are (transformed):

1.600

-1.595

-0.86o

-- m

5.641" 10-2

0.300

-0.4_7

e-3.7778t

-.718t

1.544

-l.895

-0.433
m

cos 3.0179t +

m

2.876

o.o75

o.637
-- m

sin 3.0179t

The computed response of xI is graphed in Fig. 53 where the largest

time constant (1.39) and the frequency may be checked easily.

s2 + 9.214_ + _.81814
The transfer function for xI is

(s + 3.7778)((s +0.718)2 + (3.o179)2.)
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which aids in checking the frequency response. The initial response to an

input of sin t is graphed in Fig. 6. From the transfer function we compute

the amplitude to be .207 with a phase lead of about .40 radians. The digital

output after only one full cycle of the input indicates an amplitude of .208

and a phase lead of .40 radians.

As in the transient response 3 we see here the prime virtue of the com-

puter with no intellectual effort and for modest computer charges we can

obtain quite reasonably accurate quantitative information about the system

response, such as overshoot and terminal value in the transient, phase shift

and amplitude in the frequency response -- even for a much larger system than

one for which we could practically carry out the required hand computation.

It hardly seems necessary here to illustrate the use of ASP in obtain-

ing the time history of a discrete system because, as we have seen_ all systems

are discretized before consideration by the computer. A system which is

_tially discrete deletes the exponentiation operation but otherwise requires

the same treatment.

3C. The Specific Problem: It is advisable however, to consider also a time-vary-

ing system. Probably the simplest and most easily checked is the i_ssel func-

tion Jo(t). This function is generated by the equation

I

0 1

-1

m

1

x;

if Xl(O ) = i, x2(O) = 0, then xl(t ) = Jo(t). To avoid the pole at t = 0

we will begin the trajectory at t = .i, where x I = .99750623, x 2 = - .049750934.

We made this run for several meshes on the F matrix to show how the

accuracy improves as the mesh becomes smaller. Accuracy will be checked

against the Jahnke-Emde four decimal place tables.
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First we set up a t meshsuch that in any interval 3 the sample used

does not differ by more than k percent in norm from the actual F.

This is most simply done by letting ASP compute the system matrices.

Fig. 7 showsthe program used to compute the
sient when k = 20.

The trajectory was run for k = l, l03

k = l0 and 20# along with Jo3
k = 1 was indistinguishable from

F matrices and run the tran-

and 20. The results for

are graphed in Fig. 8. The graph for

J.o
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BEGIN

LOAD T,Z1,ND, I, F.

ETPHI F. T4PH,

RINT Zl, I,PHI

HEAD IMULT PH, I , 14

ADD T,ZI, ZI,

RINT ZI , i ,PHI

EQUAT 14 I,

IF ND,ZI,HEAD 1

END

T i I

,5

Zl 1 1

©

NO 1 I

201,

I 2 2

I, 0

F 2 2

0 ,3141592654

0

-.3141592654 0

1 •
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HEAD

BEGIN

LOAD T,

ETPHI F,

RINT Zl,

IMULT PH,

MULT PH,

MULT PH,

MULT PH,

MULT PH,

MULT PH,

MULT PH,

MULT PH,

MULT PH,

MULT PH,

JUXTR 1,

JUXTR At

JUXTR A2

JUXTR A3

JUXTR A4

JUXTR A5

JUXTR A6

JUXTR A7

JUXTR A8

ADD Z1

RINT Zt

IF ND

END

1

,5

I

O

1

201.

1

5.

2

I.

2

0

ZI,ND,PR,

T,PH,

I,PHI

I, 1,

1 2,

2 3,

3 4,

4 5,

5 6,

6 7,

7 8,

8 9,

9 [,

2, AI,

3, AS,

4, A3,

5, A4,

6, AS,

7, A6,

8, A7,

9, A8,

I, Ag,

,PR, ZI,

, Ag,PHI

,Z1,HEAD 1

2

0

2

• 3141592654

I, F,

0

-. 314159264

1 •

0

:Ell. 2
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BEGIN

LOAD F, G, T,ND,P_,Z1, I,

HEAD 2EAT F, T,PH,IN,P_INT

RINT PH,PHI IN,INT

MULT IN, G, GM,

RINT ZI, I,PHI

HEAD IMULT mH, I, I

ADD I,GM, I

MULT PH, I, 2 "

ADD 2,GM, 2

JUXTR 1, 2, 3

MULT PH, 2, 1

ADD I,GM, 1

JUXT# 3, 1, 4

MULT PH_ tq 2

ADD 2,GM, 2

JUXTR 4, 2, 5

MULT PH, 2, 1

ADD 1,GM, 1

JUXTR 5, I, 6

ADD ZI,P_, Zl

RINT ZI, 6,PHI

EQUAT I, I

IF ND,ZI,HEAD 1

END

F 3 3

0 435.Z1

.6577 -.000386

355.54

1.4507

-.020892

--2,7634

-2.4507

:3 1

10, 0

T 1 1

.05

ND 1 1

7.5

PR I I

.25

Z1 1 1

0

I _ 1

0 0 0

t,'Ie,..3
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HEAD

F

T

×©

Po

ZI

N_

BEG ! N

LOAD

ETPH I

RINT

1MULT

i'4ULT

JUXTF_

MULT

JUXTF_

MULT

JUXTR

ADD

[;_ I NT

IF

END

5

0

-2.0_92

-°0386

,3

O

1

,1

5

0

1

.4

1

U

1

7.5

F, T,XO,PR

F, T,PH,

Z1, XO,XO

PH,XO, 1,

PH, 1, 2_

1, 2 3

Ptdq 2 [

3 t 4

PH, 1, XO,

4,XO 5

ZI P_ ZI,

ZI, 5, X

ND,ZI,HEAD i

,ZI,ND,

5

4.3521

-2.4507

1.4507

0

0

3,5554

°6577

-2.7634

0

0

0

i •

0

0

0

-IQ

0

0

0

i,

0

I •

FIG.
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NOV

BEGIN

LOAD •5,TA,TO,Tt,SI,S2,BE,ND,XO,MI,M3,FI,35,FI,EC

RINT XO,XO

EQUAT TO, T,TI,T2

ADD TO,TA, PT,

HEAD4 IF T2,FI,HEAD6

MULT $I,8E, DI,

ADD DI,S2, DI,

SUBT BE,S2, D2,

MULT BE,D2, D3,

PSEUO DI,+ DI,#I<,

MULT DI,D3, BE,

EQUAT T2,TI,FI, F,

IF BE,MI,HEAD9

EOUAT EC,BE,FI,T2

IF •5,•5,HEADIO

HEAD6 EQUAT FI, F,35,T5

IF •5,•5,HEAD3

HLAD9 PSEUO BE,+ T2,RK

HEADIOMULT 8E,MI, M2

ADD M2,M3, FI

ADD T1,T2, TI

MULT •5,TI, T5

HEAD3 IF T5,PT,HEAD1

SUBT T5, T, T3,

EQUAT TS, T,

IF •5,•5,HEAD2

HEAD1 SUBT PT, T, T3

EQUAT PT_ T,

_0_ PT,TA9 PT

HEAD2 ETPHI F,T3,PH,

MULT PH,XO, XI,

EQUAT XI,XO,

IF T,T5,HEAD4

RINT T, XO, X

IF T,ND,HEAD5 HEAD3

HEAD5 END

17,1964.

1

•I

l

• 128205128

1

I,4

1

.4

1

7.8

1

I I

•5

1 1

.2

1



.9Q760623

6o

2

2

0

2

0

2

0

1

i ,K30

1

5,

1

,2

2

,049750934

2

0

2

I,

2

i,

1

i

1

-,0497509_4

0

-I,

,99750623

0

-7,8

FIG. 7
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CHAPTER X

STABILITY COMPUTATIONS

i. Description of the Problem: In the analysis of dynamical systems, one

of the most fundamental questions is whether or not a given system is

asymptotically stable. For a linear system in which the characteristic

polynomial is readily available, the Routh-Hurwitz criterion is quite

satisfactory for hand calculation. With the advent of Lyapunov techniques

there is a desire to obtain not only information about stability, but also

a Lyapunov function. In this chapter we will demonstrate some ASP

methods for doing this.

2. Theory and References : For Lyapunov stability theory and definitions of

stability see

[i] R. E. Kalman and J. E. Bertram", Control System Analysis

and Design via the "Second Method" of Lyapunov; Journal

of Basic Engineering, June, 1960.

[2] H__.S. Wall, "Polynomials Whose Zeroes have Negative Real

Parts", American Mathematical Monthly_ 52, (1945) No. 6.

[3] Anthony Ralston, " A symmetric Matrix Formulation of the

Hurwitz-routh Stability Criterion"_ IEEE Transactions on

Automatic Control, July 1963.

[!t] P. C. Parks_ "Lyapunov and the Schur-Cohn Stability Criterion",

IEE Transactions on Automatic Control_ January 1964.

A different proof of the results of Ralston and Parks is given in

[5] R. E. Kalman, "On the Hermite-Fujiwara Theorem in Stability

The "ory _ Quarterly of Applied Mathematics, 1965.
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3. The S_ecific Problem: Given a continuous dynamical system

(3.1) = Fx

or a discrete dynamical system

(3.2) xk+1 =

We wish to determine i) whether the system is asymptotically stable; 2)

if so a Lyapunov function; 3) from this Lyapunov function we want to gain

some idea of the relative stability of different state variables.

ASP has one very simple method of determining stability. Given a dis-

crete system (3.2), perhaps obtained from a continuous system (3.1) by

_F
¢ = e , we need only raise ¢ to very high powers, and see if its norm

is 3 in the limit, increasing or decreasing.

This satisfies in a direct way requirement 1), but that is all.

4. Equations and Procedure: To obtain a Lyapunov function V for a linear

stationary system (3.1) we must find a symmetric matrix P and a positive

definite matrix Q such that

(4.1) PF + F'P = - Q

or for the system (3.2) such that

(4.2) ¢'P¢ - P = - Q.

The usual procedure is to select a positive definite matrix Q and

find the corresponding P. Unless F has an eigenvalue with zero real

part or, correspondingiy, ¢ has an eigenvalue of unit magnitude s there

exists a unique solution to these problems for all Q. Then the system is

stable if P is positive definite.

There exists a straightforward matrix inversion method of solving

these equations (Bellman, INTRODUCTION TO MATRIX ANALYSIS, p. 231) but set-

ting up the required matrix by means of ASP would be extremely tedious and
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2
Moreover, the matrix would be of order (n + n)2 where F is of order
n. If n is 8, this would require the inversion of a rather well-

populated matrix of order 36} a task which, besides being beyond the formal

limits of ASP is likely to involve considerable numerical difficulties.

The metho_ which we will use to obtain P relies upon the riccati

and sampled riccati equations to find the equilibrium points of the equa-

tio ns

(4.9)

and

(4.3b1

P = F'P + PF + Q

Pk+l = ¢'Pk¢ + Q"

If the equilibrium points are reached 3 they represent the required solutions

of the a_ebraic equations. The principal drawback of this scheme is that

an equilibrium point will be reached only if the system is asymptotically

stable. This precludes determining the number of unstable roots of F

by determining the number of negative roots of P. However, it provides

a very quick test to see if the system is unstable_ for in such a case,

the riccati equation does not converge. This will be illustrated in what

follows.

We will apply our procedures to a continuous system with eigenvalues

(-i, -2, -3 + 2i, -3 + 4i, -4, -5). The system will appear in four forms:

i) continuous, with F in companion form; 2) discrete, with ¢ in com-

panion form; 3) continuous, with F in "scrambled" form obtained by a

similarity transformation; 4) discrete, with ¢ the exponential of F in

the 3) form.

For 1)and 2) we shall obtain Lyapunov functions by the methods des-

cribed in [3] and [4]. This will provide some check on the accuracy of the

method. For 3) and 4) we shall use the identity matrix for Q and obtain

a matrix P. This will enable us to give some statements about relative

stability of the various components, as follows.
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Whenobtaining P according to (4.1)3 we have that

o0

(4.4) x'(O)Px(O) = f x'(t)Qx(t)dt
0

and using (4.2)

(4.7) x,Px = z X'kQXk.O O
k=l

Therefore the diagonal terms of P will tell us the value of the integral

and sum (4.3) and (4.4) when x ° is in turneach vector of the usual ortho-

normal basis. If Q = I_ then larger terms correspond to components with

larger time constants.

9- Results: This material will provide one of the very best illustrations

of the fact that diagonal and scalar transformations, easily derived and

applied, are essential to the successful use of ASP (see section 6 of this

chapter).

The characteristic polynomial for the eigenvalues we have chosen is

(7.1)

8
S + 23s 7 + 267s 6 + 1782s 5 + 7663s 4 + 21324s 3 + 36669s 2

+ 34470s + 13000.

The matrix Q corresponding to this poly_lomial for the special Lyapunov

function given by Parks is twice the outer product of the vector

a' = (0, 34470, 0, 21324, 0, 1782, 0, 24)

with itself. That is, Q = 2_'. Note that a' consists of every second

coefficient in (5.1). The corresponding P appears in Fig. i.

The entire system was transformed by T, F* = T_ -I, where

T = diag (i_, l03, i03, i03, 103 , i02, I0, i) and the resulting F and

Q used in the program appearing in Fig. 2. This gave the very reasonably
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accurate P appearing in Fig. 3, with a maximumerror of about 3 in the

sixth significant figure. This matrix had rank eight with a very high

confidence level. That is (see Chapter V) with P2 = l, we had the
following table of p and rank

rank p
6 .29. i0-2

7 •85. i0-3

8 .ii. 10-5

One aspect of this computation is that the zeroes appearing in P do not

have identically zero derivatives, hence they must decay to zero and their

accuracy can never be better than that of the larger terms. This of course

is not peculiar to this method of computation. The same inaccuracies would

occur in the inversion technique.

To obtain ¢ in companion form we need to select some time interval

_F
over which to compute e . Having arbitrarily selected • = .25 we

have the problem of computing the characteristic polynomial. It would

not have been unreasonable to compute it by hand, but after all we should

use ASP, so we decided to compute the characteristic coefficients as the

components of the solution of

where p is some vector such that [¢, P] is completely controllable.

Even then we had the choice of what form to use for F. Feeling that com-

puting $ from F in companion fo_m would perhaps provide the more

difficult problem_ we decdded to do that; so we let P' = (0_0_0_0_0_0_0,i)

and _ = e "2 F • Note that (@,PO is completely controllable because (F,P)

is.

This method of computing the coefficients of the characteristic equation of

a matrix goes back to the Gelebrated Russian applied mathematician
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The only check which we performed on these calculations was to

compare the first and last coefficients obtained in this way with the

determinant of ¢ as computed analytically (e -6" = .0024787524) and

with the trace of ¢ as computed by the machine (3.37923825).

The characteristic polynomial as computed was

8
S + 3.379237457 + 5.0860058s 6

+ 4.5157148s 5 + 2.6094069s 4 + 1.007593ls 3

+ .25321779s 2 + 0.37539943s + .0024787312,

which agrees very well in the two given coefficients• Assuming that we

were working with the tru_ coefficients we computed Q for the Lyapunov-

Parks (Schur-Cohn) method and used 8AMPL in the program shown in Fig. 4

to compute P for Q = aa' 3 where

a' = (.99999386, - 3.3791469, 5.0853854,

- 4.5132249, 2.6029441, -.99640206

•24061150, -. 029163730) •

This is also the first row of P and may be compared with the results

printed in Fig. 5- This matrix has a rank of only six_

rank

4

5

6

7

P

•3810"3

•7D. 10-4

•_4. i0-4

.23.10-3
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which is disappointing, since six-decimal accuracy was achieved in the

first row of P. This is not3 however, as important as it appears.
Weshall illustrate our reasoning in Section 7 of this chapter. When

u_ing the differential equation (4.3a) to obtain the P matrix as an

equilibrium point, the question is not so muchwhether the equilibrium is

indefinite but whether it exists. There exist unique solutions to (4.1)

and (4.2) but they are (for positive definite Q) positive definite only

if F and ¢ are asymptotically stable. On the other hand the solutions

to our differential equations are always nonnegative definite and if

(F 3 Q) (or (¢3 Q)) is completely controllable they are positive definite

(not necessarily computationally). This allows us to use the nonnegative

definite option in PSELD to compute rank, but it prevents us from ever

reaching an equilibri_n if the system is not asymptotically stable.

To illustrate the general use of ASP in creating Lyapunov functions 3

we take F in a "scrambled" form (Fig. 6) obtained by a similarity trans-

formation and using Q = I run the program shown in Fig. 7- This even-

tually converged 3 to the P in Fig. 83 indicating stability, but had a

rank of 7:

rank p,

5 .2O._0-3

6 .9O.lO-4

7 .80. io -4

8 .iO.io-3

Again using a sampling interval of .25, we obtained _ for the

scrambled system and obtained the sampled Lyapunov function generated by

(4.3). Instead of using Q = l, we used Q = .25-I # since this should

be approximately the same as Fig. 8. The resulting P appears in F bT_ _g;

notice that it is very similar to Fig. 83 the differences being int_<;<:!_ <_

by sampling.
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Nowlooking at the matrix P in Fig. 8 we can say that transients

following initial conditions in xI will involve muchsmaller excursions

than those in (for instance) x3.

The following table of llxll following initial conditions in xI and
x3 illustrates this very well.

t

0

.25

.5

.75

l.O

1.25

1.5

I Xl x3

i.0 i.0

2.1 21.0

1.9 20.0

1.3 15.o

.66 7.8

•25 2.7

•05 1.9

6. Numerical Considerations: The system provides an excellent illustra-

tion of how important diagonal and scalar transformations are in ASP.

Despite the fact that the eigenvalues of F are close together, operating

in a companion basis gives very large ratios of numbers in the F matrix.

As we see in (5.1) the largest element in F is 36669. and the smallest

is 1. However the I is not ignorable since it provides a vital link

in the topology of the system. Adding to the numerical problem is the fact

that the P and Q matrices produced by the Ly_punov-Parks m@thod have

extremely large elements and are very poorly conditioned.

For these reasons we find certain very simple transformations necessary.

Looking at the input in Fig. 2 we see that the system has been transformed

so that the largest element/smallest element ratio is now 36.669 instead of
ii88

366669., and the same ratio in Q is _ instead of i188180900576 . In

addition to this transformation we equalize IIQII and IIFII before computing

the solution to the riccati equation.
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To illustrate the effect of the two operations, we madethree runs
over 1000 computing intervals.

l) With no transformation, no equalization.

2) With equalization, no transformation.

3) With transformation, no equalization.

In l) the most significant fact is that the size of NQII makes the

computing interval so small that convergence is not approached. This

gives a double argument for these operations -- they improve accuracy and
save machine time.

In 2), slightly better results were obtained, the diagonal elements
(comparewith Fig. i) are

(9" 2"106, 5"4.107, 6"7"107, 2.0.107, 2.4.106, i. 3" 105,

1.9.103, 2-0-10).

In 3) results were even better

(1.3.108, 5-i. 108, 3.1.108 , 6.8.107 , 6.3.106, 2.5.i05,

4.1.103, 2.3.10).

Notice that better is a relative term here_ since none of these answers

is acceptable.

It is not imrossible that 3) could ultimately have converged to the

correct answer_ but we have illustrated our main point, that on any basis

of accuracy or cost_ simple transformations are essential.

That they are not always vital is illustrated by our experience in

computing the characteristic equation of e "25F. It is quite evident here

that a better job of inversion could be done if the columns of
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are normalized.

Howeverin the present case no benefit was gained by so doing. Apparently
the spread of eigenvalues (e-'25 to e-1"25) was not large enough to

demandsuch sophistication.

Another artifice which can be used to save time and improve accuracy

is the use of a changing time interval. In these runs we have used the

largest computing interval possible 3 as indicated by the coding

in Fig. 2 and Fig. 7- Wethen tried taking the output of this program

and using it as input to another in which the computing interval had been

decreased by a factor of ten. Unfortunately for illustrative purposes_

this gave no improvement in accuracy.

Another observation about the modeof convergence. Using the maxi-

mumcomputing interval, we got better accuracy with an error criterion
of l0 -6 than with l0 -8. This was becausethe error never went under

10-83 hence we were given the 1000th iterant. By this time the error
was no longer decreasing 3 it was Just randomly distributed in the l0 -5 - l0 -7

range. An error criterion of l0 -6 therefore selected a slightly better

ite rant.

Oneoption in RICAT which has helped to improve accuracy is to

use the transpose instead of the inverse whenthe riccati equation is

linear (see Chapter IV). This saves time_ and according to past experience_
it improves accuracy. Here it did not. The matrices quoted above were all computed

using the transpose_ in Fig. i0 the inverse was used (comparewith Fig. i

and Fig. 3) and the accuracy wasonly slightly improved.

7- Remarks" To illustrate how convergence implies stability_ rega_ _less

of the rank of Pj we took

F = diag (10 -2 , -2, -3 + 2i, -3 + 4i, -4, -5),
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used the same"scrambling" transformation to produce the F* in Fig. 8,

and tried to obtain a Lyapunov function.

The diagonal terms of the matrix obtained after 1000 iterations

are all larger than those obtained previously. All but the third and

fifth are quite close to the previous ones. Furthermore the percentage

difference of successive iterants is decreasing. The following table shows,

however, that the matrix is in no sense converging and displays an un-

boundedgrowth indicating instability.

i. 2. i05

1.5- i05

1.8. lO5

2. i. 105

2.5.10 5

2.8.10 5

3.1.105

3.5. lO5

3.8. lO5

4.2.10 5

a 5(k)

•26. lO 5

•39. i05

•52. i05

•66.109

•80

•95. i05

i.i.i05

1.2• 105

1.4.105

i. 6. i0 5

k

i00

20O

300

400

500

60O

7OO

8OO

9oo

i000

p(k)

•2. i0-2

•i. i0-2

•i. i0-2

•i. i0-2

•i. i0-2

•I. i0-2

•9- i0 -_

•9. lO -3

•8. i0-3

.8. I0-3

We append a few Parks-LFapunov and Schur-Cohn functions. We will

give F, P, and Q where V = x'(t)Px(t) is a possible Ly_punov func-

tion for the system _ = FX(Xk+ 1 = FXk) and PF + F'P + Q = 0 (P = F'PF + Q).

That is, if F is stable,

oo

x'(O)px(O) : I x'(t)Qx(t)dt

0

: i).
i=l
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Parks - LFapunov

F = [-a l] P = [a I] Q = 2a]2

F
p

r ala2 011[o o
Q=2 O12aI

F

0

0

0

..%

i

0

0

"a 3

0

1

0

-a 2

0

0

1

p _

m

a3a 4

0

ala 4

0

0

a2a 3 - ala 4

0

a 3

ala 4

0

ala 2 - a3

0

m

0

a5

0

aI

Q=2

m

0 0 0 0

2
0 a3 0 ala 3

0 0 0 0

2

0 ala 3 .0. aI
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Schur-Cohn

F = [-am] P = (i - _i 2) Q = (i - _12)2

I O
a 2

p __

I i - a22

-I

]i - a22

a

m

2 2
(i -_2 )

_I(i - _ 2)(i _ ,_2)

B

_l(l - _22)(i - _2)

2 )2aI (i - a 2

r

0

0

-a 3

i

0

-a 2

0

1

Q

m

(1 - a32)2

symmetric

(1 - a32)(a I - a2a3)

(a I - a2a3)2
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m

(1 - a32)(a 2 - ala3)

(a I - a2a3)(a 2 - ala3)

(a2 - ala3)2



p ____

(i - a_)

symmetric

a I - a2a 3 a 2 - ala 3

2 2 2

i + aI - a2 - a3 aI - a2a 3

2

I - a3

F = companion (a8, aT, a6, as, a4, a3, a2, a I)

Q -- 8_L:

a [(i- 2
: a8), (aI - a7a 8), (a2 - a6a 8), (a3 - asa 8),

(a 5 - a3a8) , (a6 - a8) , (a7 - alaS)].

(a4 - a4a8),

Some sidelights were discovered during the development of this chapter.

Despite the fact that they are not new and not difficult to prove_ they

seem to be sufficiently interesting in themselves to warrant inclusion.

i. Let F be a matrix in companion form, and k an eigenvalue of

Then (l_ k_ ...j kn-l) is an associated eigenvector.

2. Le__ttA= diag (ki) %i/kj if i/ j. The___n

ro

m

1 i - i

k I k2 kn

n-i n-i kn-i
kl k2 - - - n
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is nonsinsular and

VAV -I = C

where C is in companion form.

Proof: It is well known that the Vandermonde determinant of distinct numbers

is nonzero_ hence V -1 exists. The first n-1 rows of VA are the same

as the last n-1 rows of V. Hence the first n-1 rows of VAV -1 are in

companion form. But A is similar to VAV -1 so VAV -1 = C, the compan-

ion form of A.

Alternately from i. above_ V is the matrix of eigenvectors_ so

if C is the companion form of A 3 V-Icv = A.

3. If V is an invertible matrix such that the first n-i rows of VF

-1
are the last n-1 rows of V 3 then VFV is the companion form of F.

4. The minimal polynomial of a companion matrix F is its characteristic

polynomial.

Proof: Case i. The last row of F is zero. Then F is a maximal Jordan

block and its minimal polynomial is Sn = 0.

Case 2. If some coefficient of the characteristic polynomial is

nonzero, so is some coefficient b of the minimal polynomial
m P

7 b_F _ = [aij ]. Because F satisfies the minimal polynomial_ al, p+ 1 = 0.
L=0

Considero the terms in al, p+ 1. They consist of bp / 0 occurring in

bL_ 3 and no other term unless m = n.
P

5. Let J be a single Jordan block with eigenvalue k. Then
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V

m

i i

X X+l

X2 X2 + 2X

k3 X3 + 3k 2

k 4 k 4 + 4k3

xn-i xn-l+(n_l)Xn-2

m

1 - 1

k+l - k+l

(_ + l)2 - (_ + i)2

x3 + 3_2+3x - (x + 1)3

k 4 + 4k3 + 6k2 - (k + 1)/4.

m m D

_n_l+(n_l)%n-2+ (n-l)(n-2)_,n-3 _ (%, + l)n
2

is nonsingular and VJV -I is the companion form for J.

Proof: Subtract the jth column of V from the (j+l) st, j = n-l,

n-2, -..3 1. This leaves V in lower triangular form with 1 on the dia-

gonal, hence V -1 exists.

The first n-i rows of VJ are the last n-i rows of V, the con-

clusion follows from 3.

6. Let J be an n X n matrix in Jordan form. It follows from 4. and

the fact that the minimal polynomial is an invariant, that J has a compan-

ion form only if distinct Jordan blocks have distinct eigenvalues. We show

now that J has a companion form if distinct Jordan blocks have distinct

ei_e nvalue s.

Proof: We will define a transforming matrix T satisfying 3.

Consider a k X k Jordan block M in }T. From 5 we have a V which

would put this block in companion form. Extend V to an n X k matrix

in the obvious way; alternatively, take the first k columns of the V

which puts a single n X n Jordan block in companion form.

Let these k columns be the k columns of T which are multiplied

with M.
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Do this for all Jordan blocks. This completely defines T. Now

if T is nonsingular it satisfies 3. and we are through.

By the method used in 5. we can reduce this question to that of
the singularity of column juxtaposes of matrices

i 0 0 0

% i 0 0

%2 2% i 0

k3 3x2 3k 1

kn (n_l)kn-i (2)%.n.n-2 (3)%n-3

m

m

n

m

with distinct eigenvalues k.

Now prove the assertion by induction.

In 5. we showed it true for one eigenvalue.

If one of the eigenvalues is zero it is easy to reduce T to a

form which is singular only if the induction hypothesis is violated.

If none of the %'s are zero: Let k be the eigenvalue with the

largest Jordan block and _ some other eigenvalue. Then dividing the

k columns by _ and subtracting from the _ columns we can obtain an

equivalent problem with a zero eigenvalue.
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• 1

BEGIN

LOAD F, Q,ZR,LT, C_ DiPC,2o,PO,

MULT 2., Q, P,

NORM Fq NF,

NORM Pt NP,

PSEUO NP, NP,RK,

MULT NF,NP, LM,

MULT LM, P, O,

SUBT ZR, F, MFq

T_ANP F, FT,

JUXTC MF_ZR, TPq

JUXTC Q,FT_ BTI

JUXTR TP,BT, TH,

NORM TH, NT

PSEUO NTt NToRKt

MULT LT,NT, T,

ETPHI TH, T,PH, PRINT

MULT LM,PO, ZRt

PSEUO LM, LM,RK,

RICAT ZR,PH, C, D_PC, P, K,AL,

MULT LM, P, R,

RINT R, P,

PSEUO R,+ IPI,RKtPRINT

PUNCH R, Q

END

8 8

0 I. 0 0 0

0 0 0 0 0

I. 0 0 0 0

0 0 0 0 I.

0 0 0 0 0 "

0 0 0 , I. 0

0 0 0 0 0

0 0 10. 0 0

0 0 0 0 0

0 I0. 0 0 0

0 0 0 0 0

10.. -13. -34.47 -36.669 -21.324

-7.663 -17.82 -26.7 24.

8 8

0 0 0 0 0

0 0 0 0 1188.1809

0 735.03828 0 614.2554 0

827,28 0 0 0 0

0 0 0 0 0

735,03828 0 454,71296 0 379,99368

0 511,776 0 0 0

0 0 0 0 0

0 614,2554 0 379,99368 0

317,5524 0 427,68 0 0

0 0 • 0 0 0

0 0 827.28 0 511,776

0 427,68 0 576,

'Fig. 2
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8 8

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

! I

10,001

! 8

0 0 0 0 0

0 0 0

! 3

loE-9 Io I000,

l 4

0 lOOo i.

I 1

211

8 8

0 0 0 0 0

0 0 0 0 0

0 0 0 0 O

0 0 0 0 0
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0 0 0 0 0

0 0 0 0 0
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bEGIN

LOAD Fo Q, G, Re DoPC,

TRANP F, FTe

SAMPL FT, Q, G, Re Qe DePCe Pe KqAL_

RINT Pt P

PSEUO Pc+ IPIo_KtP_INT

END

8 8

0 I, 0 0 0

0 0 0 0 0

I, 0 0 0 0

O. 0 0 0 I,

0 0 0 0 0

0 0 0 I, 0

0 0 0 0 0

0 0 1. 0 0

0 0 0 0 0

0 i, 0 0 0

0 0 0 0 0

I, --,002478734 ,037539967 --,2532183768 1,007595337

4,515722478 --5,08601306 3,37924

8

--2,6094121455

8

,999987712
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-3,379126186 ,08535415
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BEGIN

LOAD F, Q,ZR*LT, C, D,PC,2.,PO

MULT 2., Q, Po

NORM F_ NF,

NORM P, NP,

PSEUO NP_ NP,RK,

MULT NF,NP, LM,

MULT LM, P, 0,

SUBT ZR. F, MF,

TRANP F. FT.

JUXTC MF.ZR, TP,

JUXTC Q,FT. BT.

JUXT_ TP.BT, TH_

NORM TH, NT,

PSEUO NT, NT,RK,

MULT LT,NT, T,

ETPHI TH, T,PH. PRINT

MULT LM,PO, ZR,

PSEUO LM, LM,#K,

RICAT ZR.PH, C, D4PCo P. K,ALq

MULT LM, P, R,

RINT R, P

PUNCH R, Q.

PSEUO R,+ IPI,RK,PRINT

END

8 8
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Fig. 7
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C_ XI

ASYMPTOTIC BEHAVIOR OF ROOTS OF THE CLOSED-LOOP SYSTEM

1. Description of the Problem. We shall examine the behavior of the closed

loop poles of optimal systems as the weighting factor for the control energy

tends to zero.

(1.1) =

m m-i

bins + bm_lS + ... + blS + bo

n n-i

s + an_iS + ... + als + ao

with an associated system in control canonical form,

_=Fx +Gu

(1.2)
y=Hx

whe z_

0 1

1

- a
a o • . •

G' = (0, O, ..., l)

H = (bo, bl, ..., bin, O, O, ..., 0).

We wish to optimize the functional

CO

(1.3) / (IlYll 2 + rllull2) dt (r = scalar),
0

and then examine the eigenvalues of the optimal system matrix

tends to O.

F - GK as r
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2. Theory and References: For the procedures involved in optimization see

Chapter VII.

The asymptotic behavior of the closed loop poles is described in

[1] R. E. Kalman_ "When is a Linear Control System Optimal?", Journal

of Basic Engineering 3 March_ 1964.

The relevant result is this: as r-+ 0 in (1.3) m of the closed

loop poles will go to the m zeroes of (1) in the left-half plane (or their

reflections about the imaginary axis 3 if some of the zeros are in the right-

half plane) and the other n-m poles will converge to a butterworth pattern

with radius

a2b __ i°\7o+
The following proposition supplements the results of the reference,

providing a simpler derivation of the product of the roots_ though not speci-

fying where the individual roots are located.

PROPOSITION. Given the transfer function

sm + bm_Ism-i + . + blS + b

bm " " on n-i

x + an+iS + ... + als + a°

If we optimize

O0

f (y'y+ r )dt
0

the product of the roots of the optimal closed loop system matrix will be

(2.1) 2+_9_o.
0 r

Proof: The product of the closed-loop poles is invariant under a

change of basis. Therefore we may choose the control-canonical representa-

tion with F in companion form_
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G' = [0, O, ..., O, I]

and

H = [bo, bl, ..., bmO , O, ..., 0].

Then the closed loop matrix F - r-IGG'P is also in companion form

and the product (-1)nTr k i of its roots is (a ° + rPln), where P satis-
i

fies the relation

= PF + F'P + H'H - r-!PGG'P = 0.

To determine Pin' we note that

+ b2 2
l_in 0 2Plnao o.... iPln,

so that

r-%2 ]= + _0 + 0Pln r [- a ° _

(_l)n ki _ 2 + r-_2.oand = a°
l

characteristic tx_ly-nomial of

Since we know that the constant term of the

r-IGG'P must be positive, it follo_s that

I 2 -L2_

= _ + r D ].Pln r I- a° + ao o

and (2.1) is proved.

If m = 0 3 then as

worth pattern with radius

r -_ 0 the closed-loop poles approach a butter-

1

If the open-loop transfer function has m zeroes, then the other

poles will approach a butterworth pattern with radius

1

T "

n-m
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3. The Specific Problem: We took the following four transfer functions

i

6 s5 .25s_ .5s3 + - - 2.5s + + - 1.25 s2 5. s

2
1 - s

i - s + .5s2

i + s + ,5s2

(A)

(B)

(C)

(D)

with poles at + i, -i + i, i/2 + i,

i + i, and (D) -i + i.

and zeroes at (B) + l, (C)
m

We selected control-canonical coordinates with

and

r

0 i 0 0 0

0 0 i 0 0

0 0 0 i 0

0 0 0 0 i

L 0 0 0 0 02.5 .5 -l.25 .5 -.25

0

0

0

0

i

.5

S

-o-I
0

0

0

0

i

_{A= [l o o o o o]

HB= [l 0 -i 0 0 O]

Hc = [l -i .5 0 0 O]

= [l l .5 0 0 0].

Then systems (B) and (D) are not completely observable, because of

cancellation of a factor between the numerator and denominator of the transfer

functions.

4. Results: Using the program appearing in Fig. i; we obtained the closed

loop system matrices F - GK which minimize the performance index
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CO

4.1) f
0

[(Hx) 2 + ru2]dt

r-i = .i; i., i0; 30, i00, 300, i000, 3000.

Using a separate (non-ASP) program we then obtained the eigenvalues

)f these matrices. The results are graphed in Fig. 23 3, 4 and may be

_ummarized as follows :

-i
l) As r _ 0, the closed loop eigenvalues are "the same" as the

)pen loop eigenvalues with negative real parts. In this case they are

-i,-1,-1+ i, -1/2_+i.

2) The eigenvalues of (C) and (D) were the same, as the lemma in

_ection 6 of this chapter assures us. The performance indices were differ-

_nt of course.

3) Observability does not seem to affect the conclusions; in both (B)

•nd (D) the expected behavior occurred.

In the graphs; the straight lines are the asymptotes of the roots.

_he circles have radius

q!_ 2 + r -1 _-_
o ]

5- N_ne rical Problems:

there are some points of interest.

There were no numerical problems in ASP, however

In Fig. i the code from

NORM Q, NQ,

to MULT SJ_ C3 C_

is an equalization of NH'HII and normllGr-lG'II to cut down on computer time

and help accuracy. This will be done routinely in all such optimization

problems.

Fig. 5 is a table for system (A) showing the max value of the perform-

ance index and _the times required for con_rgence using different values of

-1 _ is the time step used in the riccati equation_ N the number of

steps required for convergence_ T the total time required for convergence.
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Piimax is the largest diagonal element of the performance index matrix

in the computer weighting_ Piimax normalized returns it to the weighting
(4.1).

Roughly we may say that if the equalization had not been done then

for r "I 9 _ 003 instead of
= 3000 we would have had T = 3000 + 6 "

= 9 _ .15. Disregarding the accuracy problem_ this would have

3_0+6

caused N to be over 3000.

The other coding aspect is the method of introducing a sequence of
-1

r 3 s. This is done very nicely by using a LOAD in the loop. However

it is most convenient not to have to use a counter in the loop. This may

done merely by terminating with an error return. Following the last RI_

FORTRAN finds an input error and ejects, which is satisfactory if this is

in the last ASP program. A less time consuming method (and the only method

possible if another ASP program follows) is to follow the last RI with a

dummy RI having the wrong dimension. This causes an ASP (not FORTRAN)

error which goes on to the next EEGIN card.

6. _: We shall give here a necessary and sufficient condition for

the irrelevance of off diagonal terms in the error weighting of a cost functic

Let us consider a single input_ stationary_ real linear system

_ =Fx+ gu

with performance index

OO

(6. l) f [IIx IIQ + u2 ]dt.
0

We know [i] that the optimal feedback gain k which specifies the

control law: u = -k'x) will be the same for the different performance in-

dices (i) implied by the error weighting matrices QI and Q2 if

(6.2) ll¢(s)gll2 = ll¢(S)gll2 for all pure imaginary Sj

1 _2

where _(s) = sl - F) -I.
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ri(s)

Let Ti(S ) = ( (s)g)i and ri (s)= Tj-_-_' where rij(s ) is a

rational function of s. _We will show that qkl = qlk has no effect upon

(2) if and only if rkL(_n) is pure imaginary, or, more simply, if and only

rkl(S ) is an odd function of the real variable s.

What is needed is a necessary and sufficient condition for the coeffi-

cient of qk! in (2) to be zero• But this coefficient is

[_k(i_)T_(_) + _(_)Tk(_ )] = 2 Re _k(i_)T_(i_o).

The necessary and sufficient condition that the real part of the

product w-z be zero is that w = icz, where c is a real constant• A

necessary and sufficient condition that Re _k(_)Tl(_) = 0 then is that

yk(_) = If(_)T_(_) where f(_) is real. But this says precisely that

_kl(_) is imaginary. But if rkl(i_ ) is imaginary, then

rkl(i_ ) + rkl(_ ) = rk1(i_ ) + rk_ (- _) = 0. But this says that rk_(S ) is

an odd function.

Clearly this condition cannot be determined _rom the open loop alone,

but if _ = cx! then STk(S ) = cTt(s ) and the condition is satisfied.

On the ot_her hand if _ = cx! + u, tD_n the condition is satisfied if and

only if _ (s) is an even function of the real variable s.

As an example_ consider a system in characteristic form

F

m

0 i 0 0-

0 0 i 0

• @ • •

0 0 0 1

-a° -aI -ag -an_ I

G __

1-0

0

i 0

Ll
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then Ti(s ) = si-1 and if Q is replaced by

w

qll 0 ql3

0 q22 0

ql3 0 q33

• q24 "

n

q24

ioe., qij is set equal to 0 when i + j = odd 3 the control law remains

the same.

This observation saves a little computing time and explains a

phenomenon which might appear odd if encountered for the first time.

The situation will occur in Chapter XVII and appears to be true

also after the introduction of sampling.
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BEGIN

LOAD TT D DI,PC F G Q R! ZR XX

TRANP F, FT,

TRANP G, GT,

SUBT ZR, F, I,

HEAD IMULT RI,GT, C,

MULT G, C, 5,

NORM Q, NO,

NORM 5 N5

PSEU0 NOq PQ,RK,

MULT PQ,N5 M1

DECOM M1, S,SJ,ER,PE, E,RK,

MULT S, Q, 6,

MULT SJ, 5, 5,

MULT SJ, C, C,

JUXTC I, _, 2,

JUXTC 6,FT, 3,

JUXTR 2, 3, PH,

NORM PH, NP

PSEU0 NP, NP,RK,

MULT NP,TT, T,

RINT PH,PH

ETPHI PH, T,PH,

MULT T,DI, 4,

ADD 4, D, D2,

RICAT Q,PH, C,D2,PC,XX, P, K,AL,

MULT G, K, GK,

SUBT F,GK, CF,

RINT P,PER K, K CFiCF

LOAD RI,

IE TT,TT,HEAD I

END

TT 1 1

9.

3 1

.00001 0 0

D1 3 1

0 -I • -I000.

pC 4 1

I00, I00, I • I •

6 6

0 i, 0 0

u U 0 i,

0 0 0 0

.

i, 0 0 0 0

0 0 I, 0 0

o 0 0 0 1,

2,5 .5 -I,25 ,5 -,25

-l,

G

1 •

0

6 1

0 0 0 0 0

6 6
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1o -I. 05 0 0

0 -I, I. -o5 0

u U .5 -.5 o25

0 0 0 0 O

U U 0 0 0

0 0 0 0 0

o u o 0 0

0

RI 1 i

30,

ZR 6 6

0 0 0 0 0

u u 0 0 13

0 0 0 0 0

u 0 0 0 0

0 0 0 0 0

u 0 0 0 0

0 0 0 0 0
U

XX 6 6

1. U 0
0 0 i,

0 u o

0 0 0

J., 0

0 0 0

0 0 0
1.

100,

1 1

0 0

0 '0

o lo

0 0

0 0

1. 0

o o

300,

1000.

3000,

}-41 ._

0

I

i

0 0 0

Fig. 1
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LOCATION

NUMERATOR = I.

OF ROOTS

3i

Fig. 2
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LOCATION OF

NUMERATOR = 1- s2

ROOTS

3i

r -1 = 1000

2i
r -1 - 300

r-1= 100

r -1 = :50

r -1 - 10

r-1= 0

Fig. 3
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LOCATION OF ROOTS

NUMERATOR = ]-s +.5s 2

I
-5 -2 -1

-3i

r -1 = 3000

2i r-1 = 1000

r -1 = 300

r -1 - 100

r-1= 30

r -1 = 10

r-l=o
i

Fig. 4
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Numerator = 1.

-i
r T N T Piimax

•i i.425 17 24.2 638

1. 1.286 16 20.6 213

10. •982 17 16.7 96

30. .784 23 18.0 81

i00 •563 28 15.8 77

300 .386 52 12.4 89

i000 •239 46 ii. 0 117

3000 .148 66 9.8 151

Pii max normalized

2020.

213.

3o.4

14.8

7.7

5.1

3.7

2.8

i

3

3

3

3

3

2

2

2

FIG. 5
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CHAPTER Xll

MATCHING DYNAMICS

i. Description of the Problem: We are interested here in the construction

of a control system to force the output of a given system to have specified

dynamics. Two interesting features of our specific example should be noted.

(i) The process of matching dynamics will be simplified because in our

given system

(1.1)

= Fx + GU 3

y=Hx I

HG will be the zero matrix. (ii) Because the desired dynamics already

match certain modes of (the open-looP) F, we will find that the performance

index is not positive definite 3 but merely nonnegative definite.

2. Theory and References: Source material for the problem was obtained from

Dynamic Optimization of Continuous Processe__ J. G. Balchen, published at

Trondheim_ Norway by Instit_tt for Reguleringstenchnik (1961).

The method for obtaining specified dynamics will now be derived. We

wish to change the lagrangian so as to minimize NY - LYlI_

t-%

instead of

IIYlI_" The idea is to make the output obey approximately the dynamics of some

desired system

(2.1) : Ly.

Notice that this differs from the so-called "model-follower" problem (see

Chapter XVIImn which we wish to minimize flY " YdlIQ, where Yd is a solution

of the system (2.i).

This problem then is to minimize the integral of
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Wewill for the momentmakethe simplifying assumption that HG is zero3

as would be satisfied_ for instance 3 by any impulse response matrix T(t 3 _)

such that T(_3 _) is the zero matrix, or, equlvalently, by any transfer-

function matrix Z(s) in which every numerator has degree at least two less

than its denominator. This gives us an equivalent system (with the usual
lagra_ian) which is unchangedexcept that a new output has been deinfed:

(2.2) Yl : - LH)x.

Obviously the controllability has not been affected. So we need exa-

mine only the observability matrix,

(2.3) [(F'H' - H'L'), F'(F'H' - H'L'), ..., F'n-I(F'H ' - H'L')].

To decide whether or not (2.3) is completely observable requires rather ad-

vanced algebraic analysis. In the simplest case_ we have the following re-

suit:

If p = i, so that L = k (i X i matrix),

observable iff k _ eigenvalue of F.

the____n(2.3) is completely

This follows immediately if we observe that (2.3) is (F - kI) times

the usual observability matrix

(2.4) [H', F'II' F'n-lH' ].
3 ,.._

Now let us consider the changes in the riccati equation which take

place because of the new lagrangian. We will no longer assume that HG is

zero. We will however show that the performance index is still a quadratic

form in X(to) and formally derive the differential equation which the

matrix of that form must satisfy.
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Wehave the lagra_ian

D_

and the hamiltonian

,)_'g_": minE.,g+ p'(l_'x + Gu)].
U

This gives

u : - A-I[G'p + Bx]

whe re

A = [N'QN + R], N=HG

and

B = N'QM, M = (HF - LH).

The hamilton-jacobi equation is

_V ° b.
+ J l = 0,

whe re

2hLf=I1_11_+ 2p'F_+ IIG"p+ N'Q._ll__m-

Its solution can be given by assuming

vo --_iIlxll_,

where P is symmetric. This leads to the riccati equation
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- P = F'P + PF - PGA-IG'p + M'QM- M'QNA-IN'QM

_ PGA-IN'QM_ M'QNA-IG'p.

Collecting terms we see that this equation is identical with a

standard riccati equation if the parameters of the latter are defined as

^ GA-IN, ^ ^F = F - QM_ G = G_ H = M
A

R=A

Q = Q - QNA- 'Q.

Thus the new hamiltonian function fits into the standard computational

scheme.

3. The Specific Problem.

T(s) =

We are given the impulse response matrix

i i0 i

_3
-s+4 -4 4

(s+l)(s+2)

From this we obtain the time domain representation

=

and then obtain a canonical realization by means of the system (i.i). (See

pp. 340-3_6_ final report NAS2-1107_ July 1964).

We can tell _ _riori that the dimension of any realization is at least

eight since there are seven eigenvalues one of which appears squared in T(s)

or_ equivalently_ multiplied by t in T(t). A little further analysis shows

- 316-



that the dimension is at least nine since the coefficient matrix associated

with the eigenvalue -2 is of rank two. (ibid.)

Furthermore we can tell that the system is not completely controllable

by any single input nor completely observable by any single output. This

follows from the fact that not all eigenvalues appear in any column or row.

Using Method A_(Ibid.) , we can obtain the following canonical
realization.

F : diag (- 1 1 1 /''(I

[' - 5' - [' - 2, - 2, -9, - lo, \_

H

- 180 60 0 6
0 2--_ i 1 0 0 55--_ _ i

64 3 0
_7 o o o l 1 o 1 -V

G ! =

U

i

4 2 ll 0 0 4 7 0
1 o 5 5 --V -_ -3

120 0 4 i i - i 0 0
o 1 --_ 5 -5

o o -2 o -4 o o 4 o 2
...I

This realization was checked by comparing the step response computed

by the ASP program appearing in Fig. 1 with that shown in Balchen p. 38 and

also by checking the terminal values of the response with those computed

directly from T(s).

We computed the controllability matrix using uI only, in the program

appearing in Fig. 2. This should give us a matrix of rank five; it is evi-

dent from the placement of zeroes in the first column of G that we will

1

lose - _, - 5j - 103 and - 1 and it is clear from elementary controllability

theory that we must lose also one of the eigenvalues -2. This demonstrates

the advantages of having the system in canonical form 3 for the question is

not so easily answered by numerical means.
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Let us examine the situation in somedetail for the insight it

maygive in the general problem of rank determination. Four rows and

columns of W will be identically zero and thereby simplify the problem.

Welet Pl and P2 (see Chapter V) both be 10"4, thus helping to en-
sure that most of the possible ranks will be considered and their errors
printed. The times referred to are the times over which the controll-

ability matrix integral is calculated.

At .2 W was so poorly conditioned that in spite of the small

p2_ the rank was given as two. The first pi_Total element was 1.34_
the third was 1 • l0 -6"

At .4 the first pivotal element was 3. 34_ the fifth was 1 • l0 -8

and the sixth was negative.
we re

The errors however, after changing P2 to l_

rank 2 .6 " l0 "5

3 1. " l0 -3

4 .6

thus indicating that the pseudo-inversion error is not a satisfactory

test for determining rank.

At .6 the first pivotal element was 6.3, t_e fifth was .2 • l0 -7

and the sixth was negative. The errors were

rank 3 -5 " 10-3

4 .3

5 2.

At .8 the first pivotal element was 14.5_ the fifth w_s -5 " 10-7,

the sixth was .14 • l0 "7 both well down in the noise level of the initial
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pivot.. The errors were

rank 3 .1 • 10-5

4 • 3 " i0 "l

.6

6 8.

This pattern then continues for as long as W was computed.

Very similar results were obtained whenthe controllability matrix

was computedusing all three inputs except that the difficulties increased

because of the extra four dimensions and because the spread of eigenvalues

which was (- _, - 2) when u1 was used, becomes (- _, - 10) whenall
three are used. Since the elements of W are roughly proportional to

e " (ki + kjjt_ this increase in spread can be expected to cause dlfficul-

ties.

At .2 the firs b pivot was lO, the tenth
error of .4 • lO-4 occurred at a rank of 6.

At .4 the first pivot was 149, the tenth
error of .6 • l0 -4 occurred at a rank of

•2 • 10-8. The minimnm

.2 • 10"6. The minimum

6. These minima were not very

definite

5 .i" i0 "3 .9" lO-4

6 .4 • i0-4 .3" lO-4

7 .5" 10-5 .7" I0 "4.

This pattern continued with the smallest error slipping back to

smaller ranks until abruptly at 1.4 P2 could not force the error smaller
and only two pivots were madeon the - lO and - 5 eigenvalues, the two
pivotal elements being 1 • lOlO and .2 " l03. These numberscompletely

obscured the contributions of smaller eigenvalues.
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4. Equations and Procedure. We now wish to design an optimal control so.

that Yl behaves as Yl = - Yl and Y2 behaves as 92 = - 2y2.

This gives us the performance index

oo

J'O[(Yl+ Yl)#ll + (92+ 2Y2)#22 + u'Ruldt
(l.1)

where L can be rewritten as

T,= II( - )xII + IIuIl 

where Q = diag(qll , q22) and L = diag (-1,-2).

This simple form for L occurs because HG = [0]2, 3 . We know

this is correct because each denominator in T(s) is of degree at least

two greater than its numerator, equivalently T(t) It=0 = HG = [0]2, 3"

Because of this, we need only define H = HF - LH and then compute

the gains for the optimal regulators of the system [H, F, G].

However, because F and L have two common eigenvalues, the system
A

[H, F] has an observable space of dimension eight. _ expect therefore to

obtain a performance index matrix P(0) of rank eight and to find that the

vectors

[0 0 0 0 1 0 0 0 0 0]

and

[0 0 0 0 0 0 0 0 0 l]

are costless (lie in the null space of P(0)). This will be true only if

the vectors lie in the null space of P(_)3 but we are letting

P(_) = [0]
lO, i0"

[0]m,n means m × n zero matrix
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,.This follows from the fact that these vectors will give the correct

response without control effect a fact which can be seen formally from

the two zero columns of

B w

12.0 i 940 0 0 0
0 2--_ [ - i 0 0 - 551

16 4

o o o 0 -3 o 1 _. o
n w

5- Results" Using the program appearing in Fig. 3, the performance index

and optimal gain matrices were computed (Fig. 4 and 5)- Fig. 6 illustrates
-t

Yl310(t) which is uncontroiied_ being the desired response e anyway_
-2t

together with Yl, 4 (t) which_ uncontrolled would have the response e 3

also illustrated. These results were obtained using the program in Fig. 7-

321 -



BEGIN

LOAD Fg G, H, ToZ14NDt

HEAD 1EAT F,ZI,PH,IN

MULT H IN I

MULT I G SR

mINT 71 SR STR

ADD ZI T Zl

IF ND ZI HEAD i

END

F 10 10

-.25

0
0 0 0 0

0 0 O O

0 -,333333333 0 0 0

0 0 0 0 0

0 0 -.5 0 0

0 0 0 O O

0 0 0 -2. 0

0 0 0 O 0

0 0 0 0 -2.

0 0 0 0 O

0 0 0 0 0

-5, 0 0 0 0

0 0 0 0 0

0 -i0, 0 0 0

0 0 0 0 0

0 0 -I. I. 0

0 0 0 0 0

0 0 0 -1. 0

0 0 0 0 0

0 0 0 0 -i.
G 10 3

1. 0 0 0 10

0 1.3333333 -6.3157895 -2. ,66666667

0 0 -1,5714285 1.3333333 --4.

0 -.33333333 0 0 i,

0 -.44444444 -1. 4, -2.3333333

0 0 0 0 2,

H 2 i0

0 6.2068966 1. 1. 0

0 .10889292 0 .85714286 i.

1.0158730 0 0 0 10

i, 0 1, -,42857143 0
T I I

.2

Zl 1 1

0

ND I 1

16.

Fig. i
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LOAD

WRITE

WRITE

PI,P2,ZI,PC,D2,D3,TI,ND,ZR,WO, I,RI, F, G,

I THIS PROGRAM COMPUTES THE CONTROLLABILITY

SYSTEM

MATRIX FOR THE

WRITE

PIZER PI,P2,

XDOT -- F * X + G .-x- U

TRANP G, GT,

MULT RI,GT, C,

MULT G, C, Q,

NORM F, NF,

NORM Q, NQ,

PSEUO NQ, NQ,RK

MULT NF,NQ, LM,

MULT LM, Q, Q,

MULT LM,WO, WO

TRANP F, FT,

SUBT ZR, F, MF,

JUXTC FT,ZR, i,

JUXTC Q,MF, 2,

JUXTR I, 2, 3,

HEAU

RINT 3, 3

ETPHI 3,TI,PH,Tg,

MULT Tg,D2, D4,

MULT T1,D3, DS,

ADD D_,DS, D,

PSEUO LM, LN,RK,

1RICAT WO,PH, C, D,

ADD Z1.Ti, Zl,

FSEUO WO,+ IW1,AL_

MULT LN,WO, W,

WD, K,AI,

RINT Zl, W, W

IF ND,Z1,HEAD I

END

Pl 1 1

,0001

P2 1 I

I ,E--4

ZI 1 1

0

PC 1 4

o

02 1 3

o 0 0

o

D3 1 3

III

0

TI 1 i

0 I •

,2

ND I 1

ZR

3o

i0 I0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Fig. 2
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0 0 0 0 0

0 0 .... 0 0 0

0 0 0 0 0

O O , n 0 0

0 0 0 0 0

0 O C} n o

0 0 0 0 0

0 0 0 0 O

0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

o o O O O
0 0 0 0 0

0 0 0 O 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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_EGIN

LOAD TT, D,DI,PC, F, G, Q,RI,ZR,T1,X0,ND,R1,RZ,XX, H,Q1,

MULT QI, H, 8

TRANP H, HT

MULT HT 8, Q

SUBT ZR, F, 1,

TRANP F, FT,

TRANP G, GT,

MULT RI,GT, C,

MULT G, C,, 5,

NORM Q, NQ,

NORM 5, N5,

PSEU0 NQ, PQ,RK

MULT PQ,N5, MI,

DECOM MI, S,SJ,ER,PE, E,RK,

MULT S, Q, Q,

MULT SO, 5, 5,

MULT SJ, C, C,

BLOT NQ,

JUXTC I, 5, 2,

JUXTC Q,FT, 3,

JUXTR 2, 3, PH,

NORM PH, NP,

PSEUQ NP, NP,RK

MULT NP,TT, T

RINT PH,PH
ETPHI PH, T,PH

MULT T,DI, 4,

ADD 4, D, D,

RICAT Q,PH, C, D,PC,XX, P, K,AL,

RINT P,PER K, K

IF AL, D,ZILCH

WRITE

WRITE

THE PRECEDING MATRICES wERE THE MATRIX P OF THE

PERFORMANCE INDEX AND THE FEEDBACK GAIN MATRIX K,

MULT G, K, GK,

SUBT F,GK, CF,

ETPHI CF,TI,PI,

HEAD IMULT K,XO, KX,

JUXTR XO_RZ, 64

JUXTR 6,KX, 7,

RINT RI, 7, X

MULT PI,XO, XO,

ADD RI,TI, RI,

IF NDtR1,HEAD I

IF TT,TT,HEAD 2

ZILCH WRITE THE RICCATI SOLUTION HAS FAILED TO CONVERGE IN i000 STEPS

HEAD 2END

TT 1 1

8o

D i

,0000i

3

0 0

DI i 3 •

u -I, -1000,

Fig. 3
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BEGIN

LOAD Fq G, H, T,Z1,ND, K I

MULT G, K, GK

SUBT F_GK, CF

ET#HI CF. T.PH

HEAD IMULT H, I, Y

RINT ZI, Y, Y

MULT PH, I, I

ADD Zl, T, Zl,

IF ND,ZI,HEAD i

END

F i0 10

-.25 0 0 0 0

0 0 0 0 O

0 -.333333333 0 0 0

0 0 0 0 0

0 0 -.5 0 0

0 0 0 O 0

0 0 0 -2. 0

0 0 0 0 0

0 0 0 0 -2.

0 0 0 0 0

0 0 0 0 0

-5, 0 0 0 0
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0 -i0. 0 0 0

0 0 0 0 0

0 0 -I, I, 0

0 0 0 0 0

0 0 0 -I. 0

0 0 0 0 0

0 0 0 0 -I.

G i0 3

i, 0 0 0 i.
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16,
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Fig. 7
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CHAPTER XIII

AN OPTIMAL CONTINUOUS TIME FILTER

1. Description of the Problem: We shall consider a special data-smoothing

problem encountered in determining the position and velocity of a space

vehicle. This will provide a convenient illustration of the hamiltonian

technique for obtaining solutions of the variance equation. The example

shows also how to obtain the model of the random process directly from

physical cons ide rations.

The physical picture is as follows. The position of a satellite

is meas_d by means of a radio signal. It is assumed that the measure-

ment contains additive noise which may be taken to be approximately gaussian

and white relative to the bandwidth of the satellite motion. A second

measurement of the satellite motion is available from an accelerometer.

This reading is also subject to noise; but here the noise is due to drift

and other very slowly varying effects, and may be considered to be a con-

stant random variable during the interval of _Lio_±_ o. ......±_,_ _u_'_u,_ of +_

"_÷_+_ is !inearized and assigned to be one-dimensional_ and subject to

a constant_ gallssian random acceleration.

The problem is to design an optimal filter which provides the best

running estimates of the position and velocity of the satellite based on

the two types of measurement noise and the variance of the acceleration.

2. Theory and References : For a derivation of the variance equation_ see

Chapter V.

The problem was suggested by the follpwing paper:

[i] E. L. Peterson, "Optimization of multi-input time-varying systems

subject to multiple or redundant nonstationary inputs". Proc.

First Internatio_lal Co_z_ss on Automatic Control, (Moscow 1960)

Butterworths 1961. See also:
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[2] R. E. Kalman_ Discussion of Peterson's paper, in the same Pr6-

ceedings.

3. The Specific Problem: The assumptions are formalized by setting up a

model for the message process, Let zI denote the radio signal and a1

the reading of the accelerometer. Both signals are supposed to be known

exactly. The equation of motion (linearized_ one-dimensional 3 with unit

mass) is

= a(t) = acceleration = constant = a

where a is a gaussian random variable with zero mean. The accelerometer

measures a plus a constant gaussian random variable b with zero mean

(the bias error of the accelerometer):

al=a+b.

Let Ea 2 = ra and Eb 2 = rb. We assume that

(hence_ by gaussianness_ independent) and set

a and b are uncorrelated

rar b

p = ra+r--__.

We replace al, b by two new random variables uI and x 3 which are

orthogonal to each other (and thus_ by gaussianness_ independent); uI is

exactly known and x 3 is to oe estimated:

a

u1 = rb 13
x 3 = r_al- b.

Then the equations of motion are:

3. = x2_ _2 = a = a I - b = uI + x 3.

The model is now fully deseribed_ and we have :
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(3.1) _ --

0 i

0 0

0 0

0

1 G= and H= [1 0 o].

The variance equations are

(3.2)

2
dO'll/dt = 2_12- _ll/rll ,

d°mgdt= °13+ °22- _ll°_/rll'

dal/dt ---_23 - _llal/rll '

2
da22/dt = 2_23 - _12/rll,

d°2/dt" °33- _m°l/rll'

The Hamiltonian equations are

(3.3)

-L

_2

13

91

92

93
m

B

0 0 0 1/rll 0 0

-1 0 0 0 0 0

0 -i 0 0 0 0

0 0 0 0 1. 0

0 0 0 0 0 1.

0 0 0 0 0 0

x!

x2

x3

Pl

P2

P3

The 8ransition matrix corresponding to these equations is easily found.

(The -_,_,_hpower of the matrix on the right-hand side of (3.3) is zero.)

The n , is:
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(3.4) 8(t ,0) =

1 0 0 t/rll t2/2rll t3/6rll

-t 1 0 -t2/2rll -t3/6rll -t4/24rll

_2/2 -t 1 t3/6rll t4/24rll t 5/120rll

0 0 0 1 t t2/2

0 0 0 0 1 t

0 0 0 0 0 1

Weassumethat the initial value of Z(O) is: o11(0) = 022(0) = 0,
while 433(0) = _ is the effect due-_othe bias in the reading of the
accelerometer. (Of course, all off-diagonal terms of _(0) are zero. )

Using (3.4) we find that the solution of the variance equation corresponding

to these initial conditions is:

rll

_(t) = t_/20 + rll /_

t4/4 t3/2 t2/2

t3/2 t2 t

t2/2 t 1
m

It is easily verified by direct substitution that this is indeed a solution

of the variance equation which satisfies the initial conditions stated above.

The optimal time-varying gains can now be obtained at once from the

relation K(t) = _(t)H'R'13 they are:

kll(t) = t4/4_(t), k21(t) = t3/2_(t), k31(t) = t2/2oc(t);

whe re

c_(t) = t5/20 + rll/P.
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(3.5)

_l/_t

dx2/dt

_X_l_

m

- t4/_ 1 1

- t3/2_ 0 1

- t2/2_ 0 0
m

m% ml

XlI
A

• X21 +

/%

"X3J

m .

i

t2/t2(_ :

zI +

0

This differential equation is difficult to solve• Considerable

simplification is obtained by introducing a new set of state variables:

A

w1 = x3
A A

w2 "= 2xI - tx 2

w3 = x2 - tx3,

^ 2

2x I = t w1 + w2 + tw3

A

x2 = tw I + w3,

x 3 = wI.

Then by (3.5)

m

dWl/dt

_2/dt

dw/dt.

m

.t4/_

= 0

0
m

. t2/_ . t3/_

0 0

0 0
m

-t2/_

0

0
m

zI +

0

-tu I.

1

The transition matrix corresponding to this equation is

(w)(t, T.) =

m

_/_ - 5/2_ -(v_ _/2)/_

0 i t-v

0 0 1

whe re

_(_) = T9/20 + rll/P , y(t, _) = (t4-_)/8, 5(t, _) = (t3 - _3)/6.
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Thus the transition matrix corresponding to (3.5) is found to be

w(x)(t , _)=

m
m

0c-_t2/2 (t-_)C_-(y-Sv )_2/2 (_2/2-tv )_ (_+_x -By 2/2 )t2/2

-St O_-(y-5_)t -C_ + (_ + y_ - _2/2)t

-_ -(y-ST) # + y_ - 8_2/2

4. Results." Using the program appearing in Fig. i we obtained the covarl-

ance matrix for the system (3.1) with Q = 0 and R = .5.

At t = .95, the variance matrix should have been:

m

•352674

sym.

•7424727.5

1.5631005

m

.78155026

i.645 3690

i.7319673

and actually was computed to be

l

• 35267451 •7424271

1.5631005

m

•78155027

i.645 3691

1.7 319676

The transition matrix of the optimal filter as computed by sampling

the optimal filter gain at intervals of .05 was, at t = 1
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®(i,o)=

m

.72218 .79251 .41728

-.55489 .58507 .8_i

-.554_i -.41522 .8_12

and should have been

_<l,o)=

m m

•722222 .791666 .416666

-.555555 .583333 .833333

-.5555_5 .416666 .8 33333
m

This shows that the sampling is being done correctly. Accuracy of the

transient can be improved by increasing the sampllmg rate.
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JAN. 266 1g6_

BEGIN

MULT RN,HS, 211

T_ANP HSe HTt

MULT HTo21_ 221

TRANP FSo 1_

TQV_ClNa_oT_iF_oH_I_NaNDa

SUBT ZRt 1, 23_

TRANP GSo GTo

MULT GSoQN, 27

MULT 27,GT 29

JUXTC 23 22 24

JUXTC 29 FS 25

JUXTR 24 25 26

MULT ,5 T T!

ETPHI 26 TIt28,T2

MULT T2,D2, D4,

ADD D4oD3 Do

RICAT V0,28,21, DoPCq VOoKN_Alo

ETPHI 26o To28,T2

MULT T2 D2 D4

ADD D4,D3, D

HEAD 1TRANP KN, KF,

MULT KFoHS, 2

SUBT FS, 2, CFt

ETPHI CF, ToPH,

MULT PHo I, I,

_INT TI, VO,VAR

AnO TI, T, TI.

ADD Z1, To Z1
RINT Zl_ I, X

RICAT V0,28,21, D_F)Co VOiKN,Alo

IF ND,Z1,HEAD I

END

.5 1. I

.5

Z1 1 1

0

D2 I 3

0 1. 0

PC 1 4

0 0 0 le

T 1 1

el

D3 I 3

0 0 .I

I 3 3

lo 0 0 0 1,

0 0 0 I.

VO 3 3

0 0 0 0 0

0 0 0 2.
QN I I

0

GS 3 I

0 I. 0

Zl_ 3 3

0 0 0 0 0

0 0 0 0
FS 3 3

0 1. 0 0 0

1. 0 0 0
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CHAPTER XIV

LOSS OF CONTROLLABILITY BY SAMPLING

1. Description of the Problem: We take a transfer function; after obtain-

ing an irreducible representation and discretizingj we find the "deadbeat"

control law. This control law is a function of the sampling interval and

we will examine the behavior of the control and the closed loop transientsj

particularly in the vicinity of points where controllability is lost.

2. Theory and References: In addition to ChapterVIII3see: [1] R. E. Kalman,

"On the General Theory of Control Systems", Proc. 1st International Congress

in Automatic Control, Moscow (1960); published by Butterworths, London (1961),

[2] R. E. Kalman 3 Y. C. Ho and R. Narendra, "Controllability of Linear

Dynamical Systems", Contributions to Differential Equations, vol. l, no. 2.

We will preface our results with some remarks about deadbeat control

in general. Consider a completely controllable system

Xk+1 = ¢xk + ru_.

We assume that det ¢ # 0.

Deadbeat control of a sampled system is any control law which takes

the state of the system to zero in finitely many (=N) steps. Since

(2.1) Xn _ Cnxo = ¢n-:}1 ,uo + cn-21.,Ul +''" + Crn-2 + run-1

it is clear from complete controllability that deadbeat control exists and

that we never have to use more than N = n steps. Howeverj the control

law is generally not unique. This is because (2.1) admits many control

sequences

uo, u13 "-.3 Un_ 1
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as a solution. Even if N = N = minimumnumberof steps necessary to takeo
every state to 0, the solution maybe nonunique. There is one case when

the solution is unique (and No = n): if m = l, the vectors
• . are linearly independent and span the state space if and

only if N = n. In this case we mayconclude that an_ method which takes
every state x to 0 in n steps must yield the samecontrol law.

O

Thus (recall Chapter VIII) we let Qn = I, R n = 0, and _ = R k = 0

for 1 <- k < n3 and compute a time-varying closed-loop control law using

the sampled data riccati equation. According to the preceding considera-

tions, we must thereby obtain a control law which is in the case m = 1
!

identical with the unique deadbeat control law (for if not 3 XnIX n / 0 for

some vector Xn3 which would contradict optimality. ) In the general case 3

m / 13 the situation is very much more complicated•

The riccati equation usually yields a time-varying control law. In

the p_esent problem a special situation arises, as follows.

Let the control law given by the riccati equation be

uk = - KkXk, k = 0, ...3 n-1.

It is a most interesting fact that K also defines a deadbeat control law.
O

In other words (recall uniqueness), we have alor_ every- optimal trajectory

(2.2) _ = - Kox k = - I_Xk, k = 0, ..., n-l.

According to this equation 3 we can always use a constant control law defined

via Ko. This fact is well known (see [1]); but the proof usually requires

ad hoc argument. Here we shall give a direct proof based on the riccati equa-

tion.

First we note that the optimal transition matrix

to the state transition Xn_ i to Xn_i+ 1 is given by

¢i corresponding

(2.3)  i+l= [I - 1 ... ... ] i = O_ "''3 n-1.
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Weprove this by induction. ¢i is determined by the requirement

= ¢x + P -1;0 = xn n-1 un

hence

kn+1 = _ r_¢

and

¢1 = ¢ -zr_¢= (1-zr_)¢.

In the second step,

0 = X n : ¢iXn_l : #l(¢Xn_2 + FUn_2);

hence

kn_2 = _ (_ir)_l_

and

The general case may be proved similarly.

So far all calculations are valid for any r.

Now we shall assume that m = 1 and write r as y. The n

(2.4) J _-_ = o
n

for all k = i_ ..., n.

(2.4) shows, by complete controllability, that the n-fold application of

Cn = (¢ - rKo) will take every state into 0 in at most n steps. Since

there is only on___eway of accomplishing this, K° defines the optimal control

law. Thus the tim____e-optimalcontrol law may be computed by the riccati equation

when m = i.
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(2.5)

To prove (2.4), we note that

(Ay)_ = _IA'/IIAYLI2

for any matrix A.

If k = i,

If k = 2 3

(2.4) follows at once from (2.3) and (2.5).

we calculate

Cn¢-2y = [I - YT'¢I' """ ¢n-iII¢i ......¢n-i_I12¢i Cn-l]¢-iT"

_,mlt

¢n_l¢-iy = 0

by direct computation. Hence, using (2.5) for k = I,

¢2¢-2y = ¢ ¢-iy = 0,
n n

the general case is established similarly.

This is the deadbeat transition matrix for the last step.

define

e.g.

i i

%+i-- $- r ( _ $. " r) _ _ % "
j=l 0 j=l

_3= _ -_'(%%r)_%% _"

These define the deadbeat transition matrices _i from the

step to the (n-i+l) th step. We claim that

%J_'r :o-_ for j = l, ...,i,

k = i, ..., j.

Recurs ive ly

(n-i) ty
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Proof: By induction on i.

%¢-_r - r - rr_r = o.

Crucial to all this is the property of controllability. In fact_ con-

trollability for a single-input nonsingular discrete system can be charac-

terized as the existence of a K such that ¢ - FK is slmzlar to a single

Jordan block with zero eigenvalue. Notice that no ¢ whose rank is less that

n-1 can be single input controllable. We see also that controllability of

a discrete system does not guarantee that we can transfer from any state to

any other unless ¢ is nonsingular.

Even if [9, r] is derived from a completely controllable continuous

time system it is possible for complete controllability to be lost by the in-

troduction of sampling. This may occur (see the reference [2]) when the

system is discretized with an interval _ such that

(2.6)
i _ ] =z_ q

Im [%i kj

q = +_i, +_2, ...,

for any two eigenvalues ki3 kj such that Re[k i - k j] = 0.

This condition is necessary and sufficient for a single input system

and is independent of the choice of r. That is the system is no longer

single-input controllable. Recall that this occurs if the discretized system

matrix has more than one Jordan block associated with a given eigenvalue.

3. The Specific Problem. We take the transfer function

(5.1) T(s)-- s+3/2

(s2 +(s+2)(s2 + 7) "7)
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and an irreducible realization

H = [i, 3/2, 0, 0, 0]

r

0 1 0 0

0 0 i 0

0 0 0 i

0 0 0 0

-9.620_09 -" 81032_4 -10.966226 -5.4831135

G'= [ 0 0 0 0

m

0

0

0

i

-2-I

1].

We easily see from (2.6) that controllabi]ity will be lost when

is a multiple of 1.5, 2, 33 or 6. Let

F1 =

\
0 i 0 0 --\
K o o o
3

J0 0 0 i

o o -_ o
3

correspond to a realization of the factors

(3.1). Let eFt = A(t). By examining

(S2 + 2/9) and (s2 + 41T2/9)
[G, A%A%, A3a] for

in

A __.

m

I]" 1]-

cos_t sin_t

-sin_t cos _t

0 0

m

0 0

0 0

cos-_t sin_t

2"rr 21r
-sin _t cos_
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for t = _ and appropriate G vectors, we conclude that the maximum

controllability rank r is

r

4

2 3

3 3

4 3

9/2 4

6 2

The two periods 3 6 and 3 are commensurable so we might ask how the

gains differ for _ and 6 + a.

- 23 ¢ will be the same for

gains will be the same after

gible.

Since 3 except for the effect of the root

and 6 + _ we might hypothesize that the

-120
is large enough for e to be negli-

We would also like to see the closed loop transients for a and

6 + _3 and the transients and required control for _ in the vicinity

of the poles.

4. Results:

control law

In Fig. i appears the program used to calculate the deadbeat

[kl, k2, k 3, k4, ks]"

are graphed in Fig. 2, 33 4, and 5. Notice how sensi-
kl, k2, k 3 and k 5

tive they are to the sampling period. E.g., k 2 in neighborhoods of

= 2q, q = 1,2, ..., goes from -_ to _.

In Fig. 6 and 7 appear the grap'ns of k I and k 2 for _ in

[63 9.4]. These show very well how the gains differ between say .3 and

6.4 but by the time we get to 1.4 and 7.4 the differences are less than

i0_, by 2. 5 and 8.5 the differences are less than l_. When the differ-

ences are large 3 the small _ gains are larger of course 3 since the eigen-

vector associated with -2 must be taken to zero. After _ becomes large

e -12G is essentially zero without control.
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and

Next we examine the rank of the matrices

[G, _, ..., _4G]

[r, _, ..., ¢4r].

this is done with the program appearing in Fig. 8. Notice that we compute

the pseudo-inverse iteratively, thus giving us some idea of the numerical

sensitivity of rank. The following table gives our results.

t rp PP rG PG

1.45 4 .3 " 10 -3 4 .6 - i0 -4

5 .i • 10 -4 5 .2 • i0 -4

1.5 4 .i • 10 -5 4 .2 • 10 -6

5 .2 • i0-4 5 .7 " lO1

1.55 4 .i • i0-3 4 .6 • i0-4

5 -5 " i0-5 5 .4 • i0-5

1.95 3 .6 • 10 -3 3 .5 " 10-3

4 .2 " i0 -l_ 4 .i • i0 -4

5 .2 " 10 -3 5 .4 " 10 -4

2. O0 3 .1 • i0-5 3 .2 " 10-6

4 .7" lO1 4 .i

2.05 3 .4" lO -3

4 .4. i0-4 4 .9 " i0-5

5 .i • 10 -3 5 .i • 10 -3
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3.05

3.99

.

4.05

4.49

4.5

4.55

5.95

6.0

3

4

5

2

3

3

4

5

4

9

3

4

4

5

4

9

4

9

4

5

2

3

4

i

2

•3 • lO -3

•9 • 10-5

.2 " lO-5

•3 " 10-6

•2 • i01

.2 • i0 -3

.28 • io-4

.2. 10 -2

.2 • 10 -4

.i " 10 -3

•l • 10-9

.2 " i01

•3 • too-4

.8 •mo -4

.2 " 10 -3

.1 • 10-4

.2 • 10-9

•2 " i01

.i " 10 -3

•9 " 10 -9

.2 • lO -3

.i " 10 -4

•i • i0-i

•5. io-7

.7
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3

4

4

9

3

4

5

3

4

3

4

5

4

5

4

5

4

5

3

4

2

3

.26- mo-4

•5" mo-4

•7 " 10 -3

•9 • iO-5

.i " 10 -3

•2 • i0-6

.i " 10 2

.4 " lO -3

.4 • io-9

.2 " 10 -3

.6 " 10 -4

.i" 10 -4

.i • i0 -6

.2" 10 3

.4 " lO -4

.2 " 10 -4



• In general this table speaks for itself, both P
the correct answers except at 3 and 6 wherethe P

and G giving
rank is low. We

must rememberhowever that G was chosen to maximize the controllability;

it is not necessarily true that P will give us the largest controllability
rank. For instance if

l]IIF= G= o =2_,

0

then

Il01q_= P=

0 i

and

but

[G, _G] has rank one,

[r, ¢'] has rank zero.

Certain gain and sampling interval interchanges were made. For in-

stance the gain _.7 which is deadbeat for o = 2. 7 was run with o = 2.8;

the results were not as unstable as we might have expected considering the

differences between the K values.

The following results were obtained:
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_K _

1.9 2.1

2.1 1.9

2.7 2.8

2.8 2.7

2.9 3.1

3.1 2.9

3.3 3.4

3.4 3.3

stability

apparently stable

apparently stable

questionable

apparently unstable

apparently unstable

apparently unstable

questionable

questionable.

We were also interested in illustrating the lack of controllability

by showing a vector which was ignored by the control. We noticed that

was orthogonal to [1j -2, 43 -8_ 3_6] to about six significant figuresj so

using this vector for initial condtion an uncontrolled run and a run using

were both made and were indeed the same to about four decimal places.

Using the program appearing in Fig. 9 we obtained transients for

various sampling periods. In Fig. l0 and ll appear the responses for

a = 2.5 and _ = 8.5. As we have seen_ the gain matrices are nearly the

same, but we may wonder what is the effect of holding the input over three

times as long a period. The graph shows that the value of the output and

the wave shape are the same at corresponding control points. The printed

output shows that the entire state is the same.

The following table shows the number actually obtained

Control point y2. 5 Y8.5 _.5 _.5

0 I. i. 7- 0253 7.0428

1 •5773 .5800 5.1429 5.1557

2 -4971 .4975 4.4603 4.4649

3 .6674 .6662 2. 5650 2. 5778

4 .0260 .0 302 -0.0175 O. 0000
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• Whenwe tried to obtain the transient near a pole we encountered

one of TRNSI's drawbacks. If X is large enoughfor significance_ the

control exceeds the print format. So we used the program in Fig. 12 and

computedtransients for _ = 2.6_ 2.8_ and 2.9. The outputs are graphed in

Fig. 13_ 14_ and 15 and illustrate beautifully how control energy and state

excursions build up as an uncontrollable point is approached.
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¢

BEGIN

LOAD T F G Tlo I Z_ D PC ZloRZ ON ND N3

HEAD 2EAT Fo TiPHolNI

MULT INo G, GM_

T_ANP PHQ PT

T_ANP GMt GT

EQUAT I P I XO Z! I Zll 6

HEAD 1SAMPL PT P GT ZI ZR D PC _ KT AL

TRANP KT K

_INT Ko K

_LOAD T

IF Tt T_H_AD 2
END

T I I

s,1

F 5 5

0 I,,

0 0 I.

0 0 0 I,

0 0 0 0 1,

--9,620651 -4,8103255 - I 0 • 96622"F -5o4831136 -20

G 5 1

1,

TI I I

,16

I 5 5

I •

I,

I,

i,

I,

ZR 5 5

O

0

0

0

0

D I 2

0 I.

PC 1 4

O

ZI I I

O

l_Z I 5

ON 1 I

I,,

ND I I

4.995

N3 I I

2.4

T I I

6.1

511

Fig. 1
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k] vs. SAMPLING PERIOD o-

ki

100

m

m

m

O.1 I I
0 1 2 3 4

Fig. 2

+

6
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k2 vs. SAMPLING PERIOD o-

ki

10s -

102 -

10-

1.00

+

1

+

2

Fig. 3

4

+

5

+

6
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k3 vs. SAMPLING PERIOD o-

ki

10 2

I0

1.0

.I0

B

B

B

B

B

m

C)

-I

//

2

-I
/

/

3

Fig. 4

i

4

/

+

I

5

0-_

I

6
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ki

k5 vs. SAMPLING PERIOD

10

0.10

+

1 2 3 4 5

0-_

I
6

Fig. 5
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kl vs. SAMPLING PERIOD o-

0.1 I I
6 7 8 9

CT

I

10

Fig. 6

- 361 -



k2 vs. SAMPLING PERIOD o-

ki

10 2

B

10-
m

m

D

B

m

B

1.0-

m

0.1
6

m

m

B

m

7 8

+

-I-

I

10

Fig. 7
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BEGIN

LOAD F T G PI,P2

PIZE_ PI,P2

HEAD 1EAT F, T,PH IN

MU_T IN G GM

MULT PH GM 22

MULT PH 22 23

MULT PH 23 24

_ULT PH 24 25

MOLT PH G 32

I_ULT PH 32 33

I_ULT PH 33 34

MULT PH 34 35

JUXTC GM 22 41

JUXTC 41 23 42

JUXTC 42 24 43

JUXTC 43,25, 44

PSEUO 44, IWI RI< PRINT

JuXTC G 32 41

JUXTC 41 33 42

JUxTC 42 34 43

PSEUO 44, IWl RK PRINT
LOAD T

IF T, T,HEAD 1

END

F 5 5

O i,

0 1.

u 1,

e i.
-9,6206509 -4.B1U3254 -10,966226 --5,4831135 --2,

T 1 1

1.4

G 5 !

0 i.

Pl I I

.001

P2 1 1

I.

T I i

1.45

T I 1

"1.5

T 1 I

1.55

T I i

1.6

T I

1.9

T 1 1

I.g5

Fig. 8
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JULY 30. 1965

BEGIN

LOAD Z1,T1, G I5 F ZR D PC X T T2 H

EAT F_" T1PH IN

MULT IN G GM

HEAD 2EAT F. T,Pl. IN

MULT IN, G. GI

TRANP Pl, PT

TRANP GI. GT

EQUAT_I5 P

SAMPL PT P GT Z! Z# D PC P KT AL

TRANP KT K

#INT K K

EQUAT X Xl

TRNSI Z1 K Z! X! PH GN H T2

LOAD T T2

IF Zl Z1 HEAD 2

END

ZI 1 1
0

T1 1 1

el

G 5 1

0 1*

I 5 5

1,

0 1,

0 0 I,

0 0 1_

0 0 1,

F 5 B

0 1,

0 1,

0 1,

0 1,

-9.6206509 -4,8103254 -10,966226 -5,483113B 12,

Z# 5 5

0

0

0

0

0

D 1 2

0 1,

PC I 4

0 0 5.

X 5 !

1.

T 1 i

2.5

T2 I 4

2.5 .I 15.1

H 2 5

T

Fig. 9
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Io

0 1.

T I i

8,5

T2 1 4

_.5 .1 51.1

Fig 9
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13..
F-

0

.6

.4

.2

0

_ ensient Response for
cr = 2,5

I

0 2' 6 10 14
TIME

Fig. I0
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BEGIN

LOAD ZI,TI, G 15 F ZR D PC RZ T ND N1

EAT F T1PH IN

MULT IN _ GM

HEAD 3EAT F, T,PI,IN

MULT IN, G, G1

TRANP Pl, PT

TRANP GI, GT

EOUAT I5 P

SAMPL PT P GT ZI ZR D PC P KT AL

TRANP KT K

RINT K K

EQUAT I5, X ZI T3

HEAD 2MULT K X -U

JUXTR X RZ, 1

JUXTR I,-U 2

HEAD IRINT T3, 2,XU

MULT GM -U 3

MULT PH X X

SUBT X 3 X

ADD TI.T3, T3

JUXTR X RZ 1

JUXTR 1 -U 2
IF ND T3 HEAC I

ADD T ND ND

IF NI ND HEAD 2

LOAD T ND N1

IF ZI,ZI,HEAD 3

END

Zl 1 i

0

T1 1 1

.i

G 5 i

0 I.

I 5 S

1 •

0 1.

0 O I.

0 0 i.

O U --------'Z.

F 5

U _o

0 i.

0 i.

0

-9.6Z0_5c)9

ZF_

i •

Fig. 12
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D i 2

0 I.

PC 1 4

0 0 56

_Z 1 5

0 0 0 0 0

T 1 1

2.6

ND i I

2.55

N1 I 1

15.V

T 1 1

2.V

NO 1 1

2.65

N1 1 1

16,3

Fig. ]2
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0

-1

0

ul = - 5.80
u2 = - 3.95

u3 = - 5.67
u4 = - 3.79

Transient Response
for o- = 2.6

I I I I I

2 4 6 8 10
TIME

_ig. 13
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TRANSIENT RESPONSE for o-=2.8

4

-2_

ul = 4.50
u2 : 6.27
u3 :- 15.96

- u4 = - ]4.06
=

I I I I
2 4 6 8

TIME

I I
I0 12

Fig. 14
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12

D
n

D
0

10

8

6

0

TRANSIENT RESPONSE
FOR _ = 2.9

u1 = 45.73
u2 = 47.37

u3 = - 57.31
u4 = - 55.17

us= 0.17

\

0 2 4
I I I I

6 8 I0 12 14

TIME



CHAPTER XV

COMPUfATION OF A MINIMAL REALIZATION

1. Description of the Problem: Given a p × m matrix Z(s) of transfer

functions we wish to obtain a triple [H, F 3 G] of matrices such that

Z(s) = H(sI - F)-IG.

Note that Z is then the formal Laplace transform of the impulse response

matrix HeFtG.

The method used in this chapter was developed by B. L. Ho and has

the advantage of directly using experimental input-output data_ when Z

is interpreted as the z-transform of the sampled impulse-response function

H¢kG3 k = integer.

Furthermore, in the two examples which we have used_ the method

appears to be well suited to computation, although as usual, a large

spread in the eigenvalues will occasion numerical sealing problems. Because

of these two favorable aspects of the method, it appears to be much b_tter

adapted for practical application than the methods appearing in the ±_eferences

2 and 3.

. Theory and References:

[i] B. L__HbHo SIAM J. Control, 1966.

[2] R. E. Kalman, "Mathematical description of linear dynamical

systems", SIAM J. Control, 1 (1963) 152-192.

[3] R. E. Kalman_ "Irreducible realizations and the degree of a

rational matrix"_ SIAM J. 1965.

[4] J.R. Ragazzini and G.F. Franklin,; "Sampled-data control systems"_

(1958) McGraw Hill.
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Briefly we can describe our particular variant of Ho's method as
follows:

k denote theLet zij(s _ denote the elements of Z(s). Let Sijk -1
coefficient of s in the expansion of z.. in powers of s . Let 5.

denote the degree of the least common denominator of the ith row of Z(s)3

.th

_j the degree of the 1.c.d. of the j column 3 and a = max _(max(Si, _i)).i
Then we form the matrices

I Sijl sij2 Sija

Sij = sij 2 sij3 Sija+l

Sija Sija+l sij2a-1

m

sij2 sij3 - _ _ Sija+ 1

sij3 sij4 - _ _ Sija+ 1

Sija+l Sija+2 - _ _ sij2a

S = [Sij] , and 7 = [_ij],

i=l, ..., p

j=l, ..., m

= [Cl_ Ca+ 1, C2a+l_ ..._ C(m_l)a+ I]
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u

rI

ra+ 1

r2a+l

m

m

r(p-i)a+lj

whe re
.th

c. is the i column of S and r. is the ith row of S.
l 1

At this point Ho proceeds by computing nonsingular matrices P and

Q such that

PSQ=
I In O_I"

0 0

The n

P_Q=

m m

F . x
n

x . x

_Q-- [_ _ _].
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Then H_F3 and G (which are respectively p X n_ n X n3 and n X q

matrices)3 constitute a minimal realizatioD of Z(s). The x's represent

terms for which no practical or theoretical use is knownat present.

Weproceed as follows.

Assumingthat m -_P3 form the p X p matrix SS' = B and apply
D E C 0 M. This will give us nonsingular matrices T and R such that

RTSS'T 'R' =

However_this matrix is p X p_ whereas PSQ is p x q. Hencewe let
P = RT and Q* = S'T'R'. Thenwe claim that

I:I[:IPSQ* = PG =

X

and

HQ'= [H x].

The reason for this is that Q* may be made equal to Q by appending

to Q* m - p columns independent of the previous columns of Q*. This makes

a nonsingular Q3 and therefore Ho's formulas for a realization may be

applied.

For computational purposes, we may just as well use Q* rather than
Q

Q because we are uninterested in the last m-p columns of PSQ anyway.

3A. The Specific Problem" We take

1

S

s 3 - s2 + i i - s3 + s2 - 2

1.5s + i s + i - i. 5 s - 2

2 s 3s 3 - 9s2 - s + i -s + i - s - 2
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See Reference [3]. Then

S

m

i -i 0 i 0 0 0 i -i i 0 -2

-i 0 i 0 0 0 i 0 i 0 -2 0

0 i 0 0 0 i 0 0 0 -2 0 0

i 0 0 0 i 0 0 0 -2 0 0 0

0 0 i.5 i 0 0 I i 0

0 1.5 i 0 0 I i 0 0

1.5 i 0 0 i i 0 0 -1.5

i 0 0 0 i 0 0 0 -2

V

-i. 5

-2

0

-1.5

-2

0

0

-2

0

0

0

i -9 -i i 0 -i 0 i i 0 -i -2

-9 -i i 0 -i 0 i 0 0 -i -2 0
I

-i i 0 0 0 i 0 0 -i -2 0 0 I

i 0 0 0 i 0 0 0 -2 0 0 0

mm

-i 0 i 0 0 0 i 0 i 0 -2 0

0 i 0 0 0 i 0 0 0 -2 0 0

i 0 0 0 i 0 0 0 -2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1.5 i 0 0 i i 0 0 1.5 -2

i. 5 i 0 0 i i 0 0 -i.5 -2 0

i 0 0 0 i 0 0 0 -2 0 0

0 0 0 0 0 0 0 0 0 0 0

0

0

0

0

-9 -i i 0 -i 0 i 0 0 -i -2 0

-i i 0 0 0 i 0 0 -i -2 0 0

i 0 0 0 i 0 0 0 -2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

L
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m

i -i 0 1 0 0 i.5 i i -9 -i i

0 0 0 i 0 0 i i 0 -i 0 i

-i i 0 -2 0 0 -i.5 -2 i 0 -i -2

m

H=

i -i 0 i 0 0 0 i -i i 0 -2

0 0 1.5 i 0 0 i i 0 0 1.5 -2

i -9 -! i 0 -i 0 i i 0 -I -2

4A. Results: Applying the program appearing in Fig. i_ we obtained an F, G3

and H and checked these by computing their impulse response. The results

were excellent. At t = 3_ the errors were less than four in the seventh

significant digit.

The accuracy of the results was caused by the favorable circumstance

of the zero eigenvalues. In the next problem we shall see how numerical pro-

blems can arise when nonzero eigenvalues are introduced.

3B. The Specific Problem: We consider

Z(s) =

3(s+3)(s+_) 6(s+i) 2(s+7)
_l(s+2) (_4) _2-F_4) (s+3)(s÷4)

2 l 2(s-_)
T_¥3_s+-_ s+--_ (s÷l(s+2)(_+3)

2(s2+75+18) - 2s 1
_s+l)(s+3)(s+_) "(s+l)(s+3) s+--_

m

2s+5

_U_UE_T

8(s+2)
"_i) (s+3)(E-#5-_

2(9s2+27_+34) i

(_+i)(s+3)(s+5)_l

We will delineate S..
mO

brackets

with solid brackets and Z..
iJ

with dashed
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[s11] =

- F

3 , 3

I

3 , -18

I

-18 , 60

I

6o'-192
I

I

-192, 648
_ L

-18

6O

-192

648

-2328

60

-192

648

-2328

8760

-192

658

-2328

8760

-33912

648

-2328

876O

-33912

133368

7

I

I

I

I

I

I

I

I

.O

S12 =

6 F
I --30,

-30 ' 132

I

132_ -552

-552' 2256

I

2256, -9120

L

132

-552

2256

-9120

36672

-552

2256

-9120

36672

-147072

2256

-9120.

36672

-147072

589056

!

-9120 ,
I

36672 '
!

-147072'
I

589056'
I

-2357760 1

J

Sm 3

r,13

- F

2 1 -7 25

I

-7 , 25 -91

25 I -91 337

I

-91 , 337 -1267

337 _ -1267 4825
- L

-91

337

-1267

4825

-18571

337

-1267

4825

-18571

72097
m

-1267

4825

-18571

72097

-281827

q
!

I

I

I

I

I

I

I

_I
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Clearly these matrices are each determined by a ten-vector.

shall write these ten-vectors for the re_ining S...
ij

I, i-_ [3, 3, -18, 60, -192, 648, -2328,

8760, -33912, 133368]

i, 2 _- [6, -30, 132, -55, 2256, -9120,

366733 -147072, 589056, -2357760]

i, 3 _- [2, -7, 25, -91, 337, -1267, 4835, -18571,

72097, -281827]

1,4 _- [2, -5, 13, -35, 97, -275, 793, -2315

6917, -20195]

2, i _- [0, 2, -16, 98, -544, 2882, -14896

75938, -384064, 1933442]

2, 2 _- [i, -3, 9, -27, 81, -243, 729, -2187, 6561,

-19683]

2, 3 _- [03 23 -223 ii0, 4303 1502 , -4942, 15710,

-4891o, 150302]

2, 4 _- [0, 8, -56, 320, -1712, 8888, -45416,

230000, -1158752 , 5820008]

3, i _- [2, -4, 26, -172 , i010, -5524, 29066,

-149692, 761570, -3847204]

3, 2 _- [-2, 8, -26, 80, -242, 728, -2186, 6560,

-19682, 59048]

3, 3 _- [i, -3, 9, -27, 81, -243, 729, -2187, 6561,

-19683]

3, 4 _- [i0, -36, 163, -780, 3834, -18996, 94482,

-470940, 2350314, -11738436]

We
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S

B

3

3

-18

60

-192

0

2

-16

98

-544

2

-4

26

-m72

i010

B

6

-30

132

-552

2256

i

-3

9

-27

8m

-2

8

-26

8O

-242

2

-7

25

-gz

337

0

2

-22

110

1

-3

9

-27

o±

u

2

-5

13

-35

97

0

8

-56

32o

-1712

i0

162

-780

70 71,

J
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H I =

m

3

3

-18

6O

-192

6

-30

-552

2256

2

-7

25

@l

3_

2

-5

13

97

m

0

2

-16

98

-544

i

-3

9

-27

81

o

2

-22

ii0

-430

0

8

-56

32O

-z7L_

m

2

-4

26

-172

i010

-2

8

-26

8O

-242

1

-3

9

-27

81

lO

162

-780
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Rather than use the impulse response to check this decomposition,

we shall use the following relation:

HFkG = [Sijk].

4B. Results: Using the program appearing in Fig. 2 we found S to have

rank four and computed HG and HFG to be the matrices in Fig. 3. These

atrocious results were not unexpected considering that S has an element

spread from two to eleven million and the spread in SS' would be even

worse.

To obtain better conditioning some simple transformations were made.

The rows of S were multiplied by

[i, i, .!, i., .01, i, i, .i, .i, .01, i, l, .i, .1, .01]

and the columns of S by

[13 l_ .1, .1, .O1, i, l, .1, .1, .01, l, i, .1, .i, .Ol_ l, l, .13 .1, .O1].

Despite the lack of intensive analysis which went into this choice, the

results as obtained by _he program in Fig. 4 _ere tremendously impz_oved.

Fig. 5 displays HG and HFG which are acc1_ate to about for significant

digits, Fig 6 shows HF6G and HF7G in which the largest error is about

2%. These errors will increase as the power of F increases. Presumably

more careful preconditioning could further improve the accuracy.
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BEGIN

LOAD S,SB. Go HoPI oP2ll I

PlZER Pl,P2,

TRANP S* ST,

MULT ST* S, P,

DECOM P, TI, TIER,PE, EiRK,

MULT PE. T, To

MULT T.ST, Pl

TRANP To _..

MULT P. S. 2

MULT 2, Q, M

MULT P,SB, 1,

MULT 1, Q, FBe

MULT P, G, GB,

MULT H Q

RINT E E

HB

M. E FBoFB GB,G8 HBoHB

MULT II,GB, GR.

MULT II.FB, 3

TRANP II, II

MULT HB. II HRI

MULT 3, II _' FR,

LOAD A,ND Z1

MULT HR GR IR

RINT Zl, IR. IMR

ETPHI FR A PH

HEAD IADD ZI. A Zl

MULT PH GR G_

MULT HR GR IR

RINT Zl. IR..IMR

IF ND.ZI.HEAD 1

PUNCH F_$ F.H_o H,G_$ Gi

END

S 12 12

1. -lo 0 1o 0

0 0 1. -I. lo

0 --2. -1, 0 lo

0 0 0 1. 0

1. 0 -2. 0 0

1. 0 0 0 lo

0 0 0 -2. 0

0 1. 0 0 0

1o 0 0 0 -20

0 0 0 0 0

1.5 1. 0 0 I.

1. 0 0 -1.5 -2o

0 1.5 I. 0 0

1. 1. 0 0 -1.5

-2. 0 1.5 I. 0

0 1. I. 0 0

-1.5 -2. 0 0 I.

0 0 0 1. 0

0 0 -2. 0 0

0 1. -9. -1. 1.

Fig. 1
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0 --to

0 -1,
1, 0

0 0

-I. I.

I, 0
0 0
0 I.

-2. 0

SB 12 12

0 1. 1.

-26 -9, -lt
-1. 0 1.
- I o -2, n

0 0 0
D -I* -?,

1. 0 0
0 0 0
0 0

-1. 0 1. 0 0
o 1. 0 |, 0

-2,, 0 0 1 • 0
0 0 1. 0 0
0 -2.. 0 0 ! •

0 0 0 I. 0
0 0 -2. 0 0
0 0 0 0 0
0 0 0 0 0

0 o 0 0 1.5
I. 0 0 I. 1.

0 0 -1.5 -2.. 0
I¢5 Io 0 0 1,

1. 0 0 -1.5 -2.
0 0 I. 0 0
0 1. 0 0 0

-2, 0 0 0 0

0 0 0 0 0

0 0 0 0 0
0 -9. -1. I. 0

-I. 0 1. 0 0
-1. -2. 0 -1, 1.

0 0 0 1. 0
0 -I. -2. 0 0

!, 0 0 0 1.
0 0 0 -2. 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0
G 12 3

I, 0 -I, -1, 0

1. 0 0 0 1,
Io -2, 0 0 0

0 0 0 1.5 lo
-lo5 Io 1, -2, lo

0 I. -9. -1. 0
-10 0 -10 1. 10

--2o

H 3 12

1. -1. 0 1. 0
0 0 1. -1. lo
0 -2. 0 0 Io5

Io 0 0 1, 1,

i , l,
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0 1, 1, 0

-2o

-1.

Pl I 1

I,E-6

P2 I 1

I,

II 8 12

1, 0 0 0 0

0 0 0 0 0

0 0 0 I, 0

0 0 0 0 0

0 0 0 0 0

0 I. 0 0 0

0 0 0 0 0

0 0 0 0 I.

0 0 0 0 0

0 0 0 0 0

0 0 I. 0 0

0 0 0 0 0

0 0 0 0 0

I. 0 0 0 0

0 0 0 0 0

0 0 0 1. 0

0 0 0 0 0

0 0 0 0 0

0 I. 0 0 0
0

T I 1

.5

ND I I

2,5

Z1 1 I

0



JULY 30, 1965

BEGIN

LOAD $I S2 $3 $4 Xl X2 Vl V2 V3 V4 Pl P2 HR B1 B2 DI LM

MULT SltXl, GI,

MULT $2 X! G2

MULT $3 X1 G3

MULT $4 X1 G4

JUXTC G1 _2 1

JUXTC l_G3 2

JLJYTC _ GA

MULT $1 X2 Q1

MULT $3 X2 Q3

MULT £4 X2 Q4

JuxTC QI.V1, 3

JU_TC _ _P 4

JuxTC 4 V2 5

JLJYT_ _ _

JUXTC 6 V3 ?

JuyTC ? 04 A

JuxTC 8 V4 $5

JuxTC $1,£2, 9

JUXTC 9 $3 10

JUXTC ]0 44 £R

MULT DI SR S_

MULT S# LM £R

TRANP S_, ST,

PlZER Pl .P2,

MULT SRoST, BQ,

PSEUO 5Q,+ 15I,RJ,PRINT

DECOM BQ 1 S T ER P E RK

R|NT ER,E_ $5,$5 SR,SR GiGR HR HR

TRANP T. TT.

MULT P+ T. T,

TRANP P P

MULT ST_TT. _

MULT 12. P. Q.

MULT T D! T

MULT LM Q Q

MULT T,_B, 13

MULT 13, Q, 14

MULT T, G 15

MULT HR, Q, 16

R|NT 14_ F |5 G 16 H

MULT 14.BI. 17

MULT B2 17 F

MULT 16 51 H

MULT 82 15 GX

RINT F F H H GX G

MULT H GX 1_

RINT 18 S

MULT F GX GX

MULT H GX 18

Fig. 2
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RINT

MULT

MULT

I_INT

18 S

H GX 18

MULT

M{ Jl T

RINT

MtJI T

MULT

_INT

F GX

H G Y

]8 S

F r._(

H GX

18 S

GX

!8

18

GX

18

MULT

MLJ# T

RINT

MtJI T

MULT

PINT

F GX

H C.Y

18 S

F G_

H GX

_8 S

GX

18

GX

IR

MULT
MUI T

_INT

MUI T

MULT

RINT

F GX

H G_

18 S

F _Y

H GX

IR S

GX

18

GX

18

MULT

MULT

I_INT

MULT

MULT

IWINT

F GX

H GX

18 S

F _X

H GX

IF_ S

GX

18

GX

18

MULT

MUI T

I_INT

END

F GX

18 S

S1

3,

3,

-1St

60,

-192.

0

2,

118,

98_

-5_4.

2.

26.

-172.

I0_0,

$2

6_

-30,

132,

-552.

15 5

3,

-18.

60.

-192,

648.

2,

98.

-544,

2882.

--4.

26.

--172.

I010.

-5524.

15 5

132,

1552*

2256.

60.

-192.

648,

--232_.

-16,

98.

--544.

2882.

--14896,

26.

-172,

IOlO.

-5524.

29066.

132.

-552.

_256=

--9120.

-192,

-2328,

RT_O.

98*

--544.

2882.

75938,

-172.

I010,

29066.

2256,

--_120.

36672.

-192,

648,

8760,

-_3912,

--544,

2_R2.

--14896,

75Q]_.

--384064,

-5524,

2OO6_m

-149692,

7A1_?0 9

-9120.

_672.

-147072,

Fig. 2
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2256,

1.

--3,

9.

--27.

81.

--2*

8.

--26,

80.

--242,

$3

2*

25.

--91.

337,

0

I 5

-9120.

9,

-27,

81•

-P43.

8•

80.

-2_2.

728,

5

36672•

9,

-27•

-243•

72q.

-26•

-242,

-2186•

-147072,

-2?.

81•

--223 e

729•

-7187•

80,

728,

6560•

589056•

-243,

-2187•

-242,

-2186,

6_60s

-19682•

-7• 25•

_5. --91.

--91, 337•

337. -l?&7.

_1267• 4825•

2. --22.

--91•

--1267•

_18571,

110•

337•

4825•

72097•

2•

-22.

110•

-4_0,

I•

--3,

9•

-27•

81•

54 15

-22•

110.

-430•

1502o

--32

9,

--27•

81.

-243.

5

II0,

--_30°

1502•

--_942.

9,

--27.

81•

--243,

729•

--430•

|_02.

--4942,

15710•

-27•

-243•

729,

-2187•

1502•

15710,

_@Q1Ns

81e

729,

--21_7.

6561•

2•

--St

13,

97•

0

8•

-56•

320.

-1712.

i0•

-36°

162•

-780°

383_,

Xl

I•

, X2

0

Q

-5,

-35,

97,
-275•

8.

-56.

320.

-1712•

-36,

-780.

3834.

-18996•

4

13•

--_5.

97•

-27S-

793•

-56,

320•

--1712°

162•

-780,

3834,

--18996.

94482•

-35•

97•

-275 •

703.

-2315.

320°

--1712.

--454 ! 6 •
2_OOQC_.

--780 •

--18996•

-470940•

97•

-27_.

793*

--_l_m

6817,

-|712.

8888•

-4_!6e

230000,

-11_m7K_.

3834•

-I@996_

94482,

-270920_

2350314,

I •

I.

0

0

I •

I,

Vl

648•

15 I

-2328.

2882• -14896•

@76@.

75938,

-33912,

-384064,

133368,

1933442•

Fig. 2
I
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-5524. 29066•

v_ 15 I

-9120• 36672•

728• -2186•

v3 i_ 1

-1267• 4825•

-2_3• 729•

V_ 15 1

-275• 793•

-18996• 94482•

PI 1 1

•O0000l

P2 I I

I•

HP 3 20

3• 3o

_• -30.

2• -7•

2, -5•

0 2•

__la -3,

0 2•

O R.

2• -4•

-2, _-

1• -3•

I0. --36•

Bl 15 12

II

_149692• 761570• --3847204•

-147072• 589056, --2357760,

--71_7_ 656!:' , --196_3:

6560• --19682• 59048•

-18571• 72097• -281827,

15710• -_£9!0, 150302:

-2187• 6561• -19683•

-2315• 6817• -20195•

2_nOOA• --!!58752• 5520005:

"470940• 2350314• -11738436•

-18• 600 --192,

25• --910 337•

.... ;

-16• 98• -544,

-aa. 1,o. -43o.

-5_ 320_ _712_

26• -172• I010•

-76. 80• _242,

90 -27• 81•

16Pc -790: 3834,

I •

i •

i•

I •

I •

I•

I •

I •

Fig. 2
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I •

1o

B2 12 15

I.

! •

I •

! .

I •

|,

! ,,

I.

1o

1,,

I.

OI 15

1o

1 •

15

Fig. 2
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I •

I.

I •

! •

0

0

0

I.

I •

0

0

0

O

I.

O
i •

0

O I •

0

O

0

I.

0

O

I •

0

0

0

0

I •

0

0

I •

0

0 I •
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I.

2O 20
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¢

0

0

O

I .
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O" 1,

o

0

0

0

0

I@

0

0

I •

0

I I

I •

0

0

0

0

0

0 | •

0

0

0

0

I,

0

0

0

1,

0

0

0
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0
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0
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PA_- Z4 AUIUMAIIC _YNIH_IS PKUGHAR

NUMBER OF ROWS 3 NUMBER OF COLUMNS 4

-0.6003_6_5E 05

O,48gO6e/_ 05

-O._f_u_bb_ Ub

-0.SZ53B2Le_ 05

-U. IZVblUI&_ Ub

-0. _i00OB[2_- u5

O.btio_i_ ub

0.uii}Sif2_ u5

-0,_0b_zi_z_ u5

O.lZbb_b U6

MATRIX S

__S 3 NU_BI:::K OF CULLJMNS 4

-0.15341415E [1 -0.25053Ig3E II -0.4_605802E 09 0.25663784E 11

0.II584865E II 0.19123507E II -0.19607167E og -o. Ig742244E [I

-0.24571605E II -0.40141g21E It -0.69948262E 09 0.41134847E II

?
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BEG IN

. L_B

IULT SI ,Xl

MIJLT S ;_ X!

MULT $3 X I G3

MI-JLT S_ X ! G4

JUXTC G 1 G2 !

J'UXTC 2 G_I, G

MIILT S! X2 O!

MULT $2 X2 Q2

MULT S_ X2 O-m

IULT $4 X2 Q4

.j[ I_T r" _ 1 ;_./'l : 3

JUXTC 3 Q2 4

" ILJXTC zt. V2 5

JUxTC 5 Q3 6

.Jl JXTC 6 V3 ?

JUXTC ? Q4 8

.Jr JVTC -_ V _ S-_

JUXTC SI •$2_ 9

J|JXTC -Q S_ I 0

JUXTC 10 $4 SR

MI, T O I S_ SP

MULT SIR LM SIR

T_, ^ _,_ S._ _T

PIZEF_ Pl,P2,

c_I _p c,_-_S_. _(I Y_ V_ v2 V3 VZ_ P! P2 HP. =_! 52 _I LM

GI,

G2

MULT S_ST_ BQo

PSEUO BQQ+ IBI,RJQPRINT

_FCNM _ _ S TED P E RK

E_,ER SB_SB SR,SR GQGR HR HRRINT

T_ANP T. TT_

MULT P, Tt T_

T_ANP _ p

MULT ST,TT_ |_

MULT 12. _ Q_

MULT T DI T

MUIT LM _

MULT T,SB, 13

MUI T 13. _. 14

MULT T, G 15

MULT H_. _o 16

_INT 14, F 15 G 16 H

MULT 14._lt 17 i

MULT B2 17 F

MULT l& RI H

MULT 82 15 GX

_TNT F F H H G_

MULT H GX 18

RINT ]_ q

MULT F GX GX

M_J_ T H GX I_

RINT 18 S

Fig.
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S!

3,

3,

-18,

60.

-!92,

0

26

-16,

98,

-544,

2,

_ .. -/"f'a

26,

-172,

.i010,

$2

6,

132,

-552,

2256,

MULT

MULT

I_INT

MULT

MULT

I_INT

MULT

MLJI T

RINT

MLIIT

MULT

P;NT

MULT

MULT

R|NT

MLJL T

MULT

RINT

MULT

MULT

RINT

MULT

MULT

RINT

MULT

MULT

RINT

MULT

MULT

;_INT

END

F GX

IB S

F c.x

H GX

IR S

F GX

I-4 f'.V

18 S

C-X

H GX

F GX

H C_X

18 S

F C.Y

H GX

F GX

H C.X

18 5

F _X

H GX

F GX

H C._

18 S

F GX

H GX

15 5

3,

-IB.

60,

-Ig2-

648,

a,
-16,

98,

-544,

2882,

--4o

26.

-172,

I010,

-5524.

-30,

132°

-552,

-9120°

GX
IR

G_

18

GX

18

GX

;R

18

GX

18

G×

18

G×

18

GX

18

-18,

-192,

64_.

-2328°

--16°

98°

2882,

-1489&°

26.

-172o

I010,

-5524.

29066.

132,

-552.

2256,

-9120,

36672.

60,

-197,

648,

--2_2R=

8760.

98=

--_44°

2_£2=

--14896.

7Sg38.

-172,

I010°

-5524.

29066.

--149692,

--552,

22_6.

--9120.

36672*

-147072,

--192,

-2328.
@?6Oe

--33912.

2882,

75938,

lOlO*

, --_*

29066.

--14_692m

761570,

a256,

36672,

589056,

Fig.
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CHAPTER XVI

APPRaXIM/KTION OF AN IMPULSE RESPONSE

i. Description of the Problem: Given a sampled signal (i.e. a sequence of

scalars), we wish to approximate it in the least squares sense by the impulse

response of some other system (preferably perhaps smaller), whose dynamics

are specified. The approximation procedure is to be applied to signals on

any finite interval; as the interval increases, we want our approximation to

change accordingly. We will treat this problem in close analogy with the

general statistical filtering problem.

2. Theory and References : See, in addition to Chapter VIII

F3

[i] R. E. Kalman, "A New Approach to Linear Filtering and Predic-

tion Problems", Journal of Basic Engineering, Marchj 1960.

Given the signal [Zk] , k = 03 i, -.-3 a vector h_ and a matrix

we wish to determine a vector G N such that

A

N ^ kF ^ 2

r (zk - He GN) is minimum for each
k=0

N=0; i; ....

This problem has a well-defined solution, which is readily derived

by least-squares fitting techniques (see Section 5). We will approach the

problem from a slightly different point of view and obtain a solution by

using an optimal filter. This will not give u_ the true minimum because

we cannot put in the correct initial covariance matrix, but from the prac-

tical point of view the results will be very satisfactory.

o

where zk

response

is the response at t = 0.5 k

Specific Problem: We are given a sequence of scalars [Zk] k = 03 13 ...

of a dynamical system having impulse

1
-8----.

]_ (s+j)

j--i
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Wewill approximate this as the output of a system with

A

(3.z) F = diag (-.8, -1.5, -3.), H = [l, l, l]

by determining the optimal estimate xN of x(.09N) with the aid of dis-

crete filtering. Then we relate this back to
A

t = 0 via the transition matrix to obtain an estimate of x(0). We may

regard x(0) as equivalent to the matrix G for the system (3.1). Thus

we will estimate the given impulse of a known finite-dimensional linear
A

dynamical system_ in which F and H are fixed (the latter without loss

in generality) and G is to be determined 3 optimally.

4. Preliminary Computations :

i I rl0 0 1

F = , G = , H = [! i],

L° L ILl
T _ ol.

We generated a tape of the impulse response of (4.1) using the program in

Fig. i.

This specified the given signal. Then using H = i, F = .5

(R = i), we ran the filtering program Fig. 2, to obtain x(01t). The initial

^ x(1= I00, initial estimate x = 0 - i) = 0. It follows thatvariance was Po o

P
-.i n

PN+I = e 'PN + i

-.05 PN

= e PN

^ _.05XNXN+ 1 = e + _(YN - _N )

= = .05_qr__T
%-Z e'05_N e _.#_I.05(N-I)).
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The exact values of gN are given by

G =0
O

A

G I = .04727

G 2 = •09 311

G 3 = .13746

compared with the machine results

A

G =0
O

A

G 1 = 0.47273731

62 = .09 3116675

G 3 = .13746906.

The small loss in accuracy is apparently caused by the fact that

only accurate to six decimal places.

A second check was made using

P1 is

r

I 0 i 0

0 0 i

-3.6 -8.1 -5.3

S

m

0

0

l_I

H = [1 0 0 ],

to specify the impulse response
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1
(s÷ .8)<s+ + 3)

This was approximated with

r

N

-.8

0

0

0

-i.5

0

m

0

0

-3
m

The two systems have the same eigenvales.

, H = [i, i, i].

G can be calculated to be

Using P = lO00I
o

A

G=

" . 649 35065=_

-.9523809._ t"

•30303030_I

(R = i), the approximation was run and converged to

•64159

t%

G = -.93345

•29022
m

by t = 7.1.

5. Procedure and Results for Specific Problem: We computed the impulse

response at intervals of .05 for the transfer function (3.1) by applying

the transformation

T = diag (104 , 104 , 104 , 104 , 104 , 10 3 i00, i0)
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to the system

H : [1043 O, 0, 03 O, 0, 0, 0]

G' = [0, 0, O, O, 0, 03 0, 102 ]

F = companion [-403320., -109584.3 -1183 124. j -673284.3

-22,449., -4536.3 -546., -_6. ].

The corresponding signal is plotted in Fig. 3. It is obtained using

the program in Fig. 4, which is essentially the same as in Fig. 13 except

that the response is printed.

Then we approximated the signal with the system

F=

-.8 0 0

0 -i.5 0

0 0 -3.

H = [i, i, i],

using the program in Fig. 5, which gives us

lative square errors. This was done by obtaining a sequence
A A

x(.OSNI.05(N-1)) = xN which would be translated back to the origin as
A

oy using the transition matrix ¢(0,.05N). The three components of G

are plotted in Figs. 6 and 7. N

Z (z(.05k) - z(.05kl.05k)) 2. This is
It is of interest to have

k=O

is. tabulated in Fig. 83 along with

_(tlt - i), G, and the cumu-

A

GN

N
Z (z(O.Sk) - _(0.Skl.O5(k -i)))2.

k=O

•It is really amazing how much better estimate is obtained by including an

extra reading. The period of small increase around 4.5-5.0 seems to corres-

pond to the region where the optimally approximating curve crosses the signal

curve 3 see Fig. 9.
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There only remains the task of displaying the approximating impulse

response computed in this manner and the square error given by it. For this
A

we can choose any value of G. In Fig. 9 we have graphed the impulse res-

ponse corresponding to G(7.), a point where G has attained steady state.

The error is tabulated in Fig. 10. These results were obtained using the

program in Fig. 12.

A

The response and error were also obtained for G(2.0), which is
A

approximately two-thirds the final value of G. The impulse reponse is

graphed in Fig. ll, the error tabulated in Fig. 10. These results were

obtained using the program in Fig. 12.

As an experiment_ we let the initial variance matrix V0 be 1017I.

This gave a run which differed drastically from the previous run with

V0 = 103I. The terminal value of G (compare with Fig. 6 and 7) was

m

101.93869

A

G(7) = -2_. 47173 •

196.84900
m

Immediately we see that the curve generated by this G(7) will have an

enormous s_n square error. The initial error (63. 311958) 2 above is larger

than the total error for the previous estimates (see Fig. 10)_ however the

error given by _(t It) is extremely small (see Fig. 13 and compare with

Fig. 8). The response curve appears in Fig. 14; it has very good fit at

the peak and rather poor fit at the ends.

In an attempt to improve the fit in the vicinity of the peak for the

problem with V0 = 103I_ we let R = 0 on the interval [l_ 3]j using the

program in Fig. 19. This gave behavior very much like that with the large

V0. The terminal value of G was

A

G(lO):

m

i17.91459

-299.19269

315.48727

w
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The errors are given in Fig. 16 and the curve plotted in Fig. 17.

This procedure was extremely successful in giving us good results 3

very good results_ at the peak 3 but associated with this is a much poorer

performance at each end. These results are quite reasonable considering

that we have penalized errors on [i, 5] so heavily.

6, Least Square Procedure: We will now analyze the same problem from a

strictly least square approach.

Define

^ N^.t^ ^^.

W N = Z ¢i HtH¢I.
i=0

Then the problem stated in Sec. 2 has the solution

^ ^ N^.!

:

Observing that

(6.1)
A ^ ^ ^ A ^

WN+ I = H'H + ¢'WN¢

or

^ A A |A ^^

(6.2) w_+l = wN + ¢_+l_,_¢_+l

^

we will try to obtain a recursive definition of GN.

^ ^_ N+I _i,^
GN+ 1 = WN+ 1 Z H'z. 3.

i=0

= W N + _+i ¢

because is the identity operator on the range of
^ A _ ^r_|^ ^ I^

[H', ¢'H', ¢_" H', "'', cn H']

AN+It^ ^AN+ ] A ^ A.... ^_ N+I

_N+I = WN+I(WN+I - _' _- H'H¢_' "_)GN + _N+I ¢ Zn+l

_N+ ^WN+Ifrom (6.2). Now l' is the identity operator on range
^ ^$

WN+ 1 _ range WN. But GN e range WN, so we obtain the recursion formula
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^ ^ ^_ ^N÷ lt^ ^" N+l"
G = a + W_÷¢ _"- _,(zN+l - He aN)N+I N 1_ ±

which holds at every step.

Unfortunately we will find no such formula for W_.. • A recursion formula

exists for WN_I, but it requires that _-i and ist. This will mear_ of

course that before starting the recursion formula we must obtain n readings_ find

^W_1 and then proceed.

^-l ^-l ^-l ^-]^-l' ^ ^^_I ^.I A_l'^ .--]̂ ^--l^--l.̂--l'
z) -K_ -wN ]_ •WN+c _ [wN -WN_ _'

The following example shows that the recursion formula need not holdj
^-i

even if WN_ 1 exists.

Consider

^ ^

H = [1 O] _ :

I I I"0 i

This system is completely observable since detE]^^ _ O.

ti1 IIii 0 1 0

^ ^ _ ^ -l
= W = , _ =Wo _ o

^ -i, I|i

=L1
1 -1

^ ^ i

W1 = W =
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But using the recursion formula, we obtain

0 0
D

^_
Not only is W2 incorrect, but it is singular, and in fact all the sub-

sequent W will be singular (because _-i _1 is not completely controllable)3

Using this procedure and the programs appearing in Figs. 18 and 19 we com-

puted

^

G(2.) = [63.124303, -118.11554 , 58.159163]

and
^

G (7-) = [79.965998, -153. 98624, 78.573982 ].

These gave the response appearing in Fig. 20 and the errors tabulated in

Fig. 21. Notice that the filter gave results quite comparable to the true

minimum.

In Fig. 18 we have used 9 steps before inverting the observability matrix

^ 10-4.
WN with inversion errors of about This was required because inverting at

three steps gave inversion errors of l0 -1.

As a test we put the same system in companion form with H = [i 0 0]

and were able to invert at three steps with errors less than l0 -4. Using F
^

in companion form with H = [i, i, i] we obtained inversion errors of 10 -2. The

cumulative error was not significantly affected by these small errors. This is

an interesting point which can perhaps be resolved as follows: If knowledge of
^

the system had been perfect i.e. if we had. used the F = F, then our use of

i0171 as an initial covariance would probably not have affected the limit value

of G. However by using an incorrect value of F we were insensitive to small
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errors in the sense that their contribution would be small to a total which,

because of the mismatched dynamics, must be large.

On the other hand3 because of the mismatcheddynamics, information

about the whole curve must be available. Theoretically if the dynamics are

matched we need only any three points on the curve.

7. Disression: To the person interested in using digital computers to apply

optimal system theory, one of the most frustrating and lingering problems is

that of matrix inversion.

In discrete problems_ many engineers have felt that the matrix Pk+l

should be computed stepwise by using one column of P (row of H) at a

time 3 in order to guarantee that [P'PP+R] _ can be accurately calculated.

This procedure can be used if R is diagonal; we can prove this by remember-

ing that F and ¢ need not be constant matrices. In the filtering problem

this corresponds to treating the output vector one component at a time with

no dynamics between 3 a procedure which is clearly feasible if the noise in

the dmm_-_'_^_ "_ _+_ " ......_o+_ i.e _ _ _ a_go_a].

If an inversion _outine is used routinely then problems can arise (e.g.

_P'I_ + R] is always nonnegative definite but an inversion routine may very

well treat "noise" of t_,= wrong sign as legitimate n_nbers, rendering the re-

suit _'PP + R]--' inaefin_te). This particular problem can be avoided by

using a pseudo-inversion routine for nonnegative definite symmetric matrices

which will guarantee symmetry and nonnegativity of the output. More serious

is the question of the subtraction occurring in

P - PM'(MPM' + N)#MP.

If Pk -_ 0 as k -_ % it will be difficult computationally to pre-

serve nonnegativity even with the use of PSEbD. Using a stepwise process

it may well happen that

PM'MP

(7.1) P - _--_N (M = row vector)
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will be numerically nonnegative. In particular if N # 0, it seemsthat (7.1)
should always be _ 0.

It turns out that this process also uses less machine time and there-

fore appears from every viewpoint to be the desirable meansof computation
if N is diagonal.

In what follows we give a strictly algebraic proof that the two methods

of computation are equivalent.

Let

Let

whe re

S = P - PM'(MPiVf' + N)_MP

SI = P - PH'(H'H' + R)_HP

S2 = SI - Slh'(hSlh' + r)_hS I.

We want to show that S = S2. This reduces to proving that

PM'(MPM' + N)_IvIP = PH'(HPH' + R)_H'P

+ P[h'-H'(H'H' + R) H'Hh'][h(P-PH'(H'H' +R)_H')h'+r]_(h-hPH'(HIDH'+R):_H)Po

The psuedo-inverse of a matrix is_ unfortunately 3 not a continuous func-

tion of the elements of the matirx_ hence we will need to consider several cases

l) If r = 0 and hPh' = 0_ then hP = 0 and we prove quickly that

]MPM' + N] _
HPH' + R HPh' _I

hPH' hPH' + r
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2)

prove that

In the most important case_ when

(MPM' + R) = 8, where

m

(HPH'+R) _ [I+HPh' (hSlh '+r)-_PH' (HPH '+R) _ ]

symmetric

hSlh' ÷ r / 0_ we can still

-(HPH' +R)_ HPh ' (hSlh '+r) -1

h (hSlh '+r) -1

We do this by recourse to the pseudo-inverse axioms:

MPM' + R =

HPH' + R KPh'

hPH' hPh' + r

(HPH' + R)(HPH' + R) :_ 0

0 0
D M

This is symmetric, which proves that axiom 4 holds.

In order to obtain this form it is necessary to know that

(6.2) (KPH' + R)(HPH' + R)_H = H

This follows from Lenna (2.14), Chapter IV.
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It is clear now that @(MPM' + N)@ = @, which proves that axiom 2

holds. Using (2.1) we see that (MPM' + R)@(MPM' + N) = (MPM' + N)I which

proves that axiom 1 holds.

There remains to show that @(MPM' + N) is symmetric

_H'0+ R)_(_'_' + R) 011

3) The final case is considerably less important. We have

hSlh' + r = 0 and hPh' / 0. Unfortunately it is no longer true that

(MPM' + N) =

(_H' + R)# 01[
0 0

so we will have to prove that

PM'(MPM' + N)$MP = PH'(HPH' + R)_HP.

There seems to be no royal way of doing this_ so we will compute

HPH' + R
hPH'

+ R)

(MPM' + N)

This follows from the fact that

(HP.' + R)(_PH' + R)"_= (_P_' + R) .

(An interesting result obtained in this investigation is that

S_S = SS_ for any symmetric S). We wish to compute

EPH' + R BPh 1hPH i hPh i
_I

s_2 = s2_ and
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and before we can do so_ we must determine if

hPH ' m hPH '

HPH' +R

hPH'
]

HPH' +R

i _HPH' +R)_ 21{pH'

__ I - i +

hPH'] (HPH'+R) HPh'
(HPH+R)$2HPh'hPH I+ i+_

m
m

HPh' - _P_H'+R)_HPh'hPH' (HPH'+R)_Ph' - (HPH--+R)_HPh'hPh'

i + hPH'(HPH' + R)_2HPh '

hPH,(HpH,+R)_Hph ' hPH'(HPH'+R)_2Hph'(hPH'(HPH'+R)$HPh ' - hPh'
-- ,} h,

J

If we now remember %hat hSlh' = h(P - PH'(HPH' + R)_HP)h ' = 0 we obtain

J

HPh '

hPH' (HPH' + R)_HPh '

m

HPh'

This shows why the condition hSlh' + r = 0 is a natural one though it

does not appear to be at first; it is important to the choice of which formula

can be used in the iterative definition of the pseudo-inverse.
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IMP

I-I' + R I-]l°h '

hPH, hPh'

#
I-IPH '

(I-

[hPH'

I-IHPh '

hPh 'I_ _1
[hPH' hPh']

CZ i

HPH'+R

hPH'

hPh']

hPH, hPI-I'

#' .II_I_'÷ 1 #

L_hP.,] t

whe re

_=l+ [hPH' hPh']

t

but

HPH' + HPh I

= (HPH' + R)#HPh '

= (HPH' + R)_HPh '.

(HPH' +R) _2HPh '[hPH' _HPH' +R) _KPh' -hPH' ]

i+_-

So _ = 1 +_ and

(_M' + N)# =

m

#
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P[H' h'](XPm+R) = fPH'

HPH' +R

hPH '

- [PH' (HPH'+R)_HPhI+'IPh' ]hPH' (EPH'+R) 1

h 'PHJ

H P = (_H' + R)_HP IHPH'+R)_2HPh' [hPH'(HPH'+R)_HP-hP].

J - i+_

Now consider h[P - PH'(HPH' + R)_HP] = he.

We know that heh' = 0 but since e is nonnegative definite, it must

be that he = 0.

The re fore

P[H' h' ](MPM + N) _ [_ P = PH'(HPH' + R)_HP.

LN

7. Adaptation by Error Minimization: This technique may be used to determine

the parameters F by trial and error to minimize the least-squares fitting•

As seen in Fig. 21 we had an error of 221.4 when using k(F) = - .8, -1._, -3.

•'he ±OLm<Jwm*_ u_u±_ shows the _....._..7_+_ _._#e_....................m_rm+mm as t,h_g e_or _s de

cre_sed.

- kl - %2 - k3 ERR

•8 1.5 3. 221.4

•7 1.4 2.9 148.9

•6 1.3 2.8 147.2

•7 1.2 2.7 121.2

•7 1.2 2.5 i15-5

•71 1.25 2.4 109.5

•73 1.25 2.3 103.4

•75 1.29 2.1 95.9

•77 1.27 1.9 90.0

.88 1.27 1.9 78.7
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a

If we allow F to have one more eigenvalue_ we obtain the following results:

- _l - _2 - _3 - _4

.6 m. 2. 2.9 176.2

.8 m.l 1.9 2.9 z02.3

i. 1.2 2. 3. 41.4

l.l 1.4 2. 3. 13.2

1.2 1.4 2. 3. 8.45

i. 3 1.4 2. 3. 7.78

1.28 1.4 2. 3. 7.63

1.28 1.4 2. 2.82 7.l0

Like other adaptive schemes, this parameter search procedure is

not as easy as the table above makes it appear. Nevertheless the search pro-

cedure can be mechanized to obtain an optimal fit over some chosen interval

of the impulse response. This sequence of systems can then be patched to-

gether to provide an approximating time varying linear system.

The impulse responses of the "optimized" approximating systems

appear in Fig. 22 and 23.

The following is a very rough estimate of the arithmetic operation

required to compute Pk+l" First by treating m outputs and then by treat-

ing 1 output m times. Floating addition_ multiplication and division

are considered equally time consuming.

The inner product of two n vectors is assumed to required 2n

operations_ actually n multiplication and n-i addition. Matrix inversion

is ass_ed to require n3 operations.
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Stage (i) Inversion (ii) Single output

MP

MPM'

MPM' + N

(_, + N)-i

(_, + N)-_

m'(_z_'+ _)-_

P- PM'(m_'+ N)'i_

2mn 2

2mn 2 + 2m2n

2ran2 + 2m2n + m

2mn 2 + 2m2n + m+m 3

2mn 2 + 4m2n + m+m 3

4mn 2 + 4m2n + m+m 3

4ran2 + 4m2n + mVmS+n 2

2n 2

2n 2 + 2n

2n 2 + 2n+l

2n 2 + 2n + 2

2n 2 + 3n + 2

3n 2 + 3n+2

4n 2 + 3n + 2

Now multiply the operations in the single stage process by m and sub-

tract_ the difference is

4m2n - _mn - m + m3 + n2 > O.
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BEGIN

LOAD H! F, G, T.NDoZ1. I.

REW 5

W_F fi

ETPHI F. TtRH

MULT I* G_ l.

REW 5

HEA_ | M| II T H a 1 • Y t

SAVE 5 Y. YtZl_ T,

A_ 71e TI 71

MULT PH, I. I,

IF ND.ZI_HFA_ 1

END

H I 1

lo lo

F 1 1
0 0 0 -I.

G _ I

10 -10

T 1

i .I

NO I I

Z_

I

3@

0

2 2

I, 0 0 10

Fig. 1
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BEGIN

REW 5

LOAD Z|, D,PCtTIoLFoV0,LHo Rt Ot IoXCtNDo

EQUAT I, 3,

ETPHI LF,TI,PH

SUBT Z1,T1, MT,

ETPHI LF,MT,HP,

HEAD 1BRING 5 Y, Y,

SAMI:q.. PH,V0,LH, R, Q, D,PC,

MULT LH,XC, YC

V0, K,AL,

SUBT Y,YC, YT,

MULT KoYT, 1,

MULT PH,XC, 2,

ADD Io 2, XC,

MULT HP, 3, 3,

MULT 3,XC, GC,

RINT Zl, GCoGC

ADD ZI*TI, Zl

IF NDeZI tHEAD I

END

Zl I I

0

1 2

0 .1

PC I

0 0 0 I,

TI 1 1

,,1

LF 1 I

--e5

VO 1 I

100e

LH 1 1

I,

R 1 I

I •

O 1 1

0

I I I

I •

XC I 1

ND 1 I

20

Fig. 2
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0

0

- 426 -



BEGIN

, LOAD

REW

WEF

ETPHI

MULT

TRNSl

_FW

HEAD 1MULT

SAVE

ADD

MULT

IF

END

Ht F_ G_ T,ND,ZI, I_ JQ KQ RoGM,TT

5

5

Fo T*PH

I, Go 1,

J, K_ R, G,PH,GM, HtTT

H, 1, YQ

y_ Y,Zi. T,

ZI, T, Z!

PH, I, l_

ND_ZI,HEAD I

H

F

1 8

I= 0 O _ 0

0 0 0

8

0

0

I,,

0

0

0

1. 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1.

0 0 0 0

0 0 1. 0

0 0 0 0

0 10, 0 0 ,

0 0 0 0

10,, 0 0 0

0 0 0 0 0

10. -40.32 --109.584 -118.124 -67. 284

-22,449 -45 • 36 -84 • 6 -36 •

G B 1

0 0 0 0 0

0 0 1000,

T 1 1

,05

10.

Zl 1 I

0

IB B B

l, 0 0 0 0

0 0 0 0 I,

0 0 0 0 O

0 0 0 I, 0

0 0 0 O Q

0 0 I, 0 0

0 0 0 0 0

0 I, 0 0 0

0 0 0 0 O

1. 0 0 0 0

0 0 0 0 |,

0 0 0 0 0

0 0 0 I.

J I 1

0

K I B

0 0 0 0 0

0 0 0

R I I

0

GM B I

Fig. 4
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0 0 0 0 0

0 0 0 ,

!

100o

4

o05 O IQ.

Fig. 4
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JANe 22, 1965

BEGIN ,

REW 5

LOAD Zl. D.PC.TI*LF*VO.I H4 Rt Q. I.XC_Nno

EQUAT I. 3*Z1.Z2.

ETPH! LF.Tt tpH

SUBT ZI.TI$ MT$

_TPHI L_MT_ _D.

HEAD IBRING 5 Y, Y,

SAMDL pH.Vn.|N, o s n. _DC_ VOe K_AL_

MULT LH,XC, YC

_tJBT Y.YCt YT,

MULT KtYT, I*

MULT PH.XC, _,

ADD 1, 2, XC.

_LIIT HD° _m 3_

MULT 3,XC, GC,

MULT HP xc 7

MULT LH 7 YC

SUBT y yC yT

MULT YT,YT, Y2

ADO Z2.Y2, Z2.

TRANP GC, GT,

TRANP XC+ _T_

JUXTC GT,XT, 4,

JUXTC 4.Z2. 5t

RINT Zl, 5, X

ADD ZI,TI, ZI

IF ND,ZI,HEAD I

ENO

Zl I I

0

D 1 2

0 .05

PC I 4

0 0 0 le

TI l I

.05

LF 3 3

-eB 0 0 0 -1.5

0 0 0 -3.

VO 3 3

I000. 0 0 0 I000.

0 0 0 I000.

LH I 3

I. I. I.

R I I

I.

Q 3 3

0 0

0 0

I 3 3

0 C) 0

0 0

I. 0 0 0 I.

0 0 0 l, i

XC 3 I i

0 0 0

ND 1 I .i

10. +
/

Fig. 5

J
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8O

7O

6O

5O

4O

3O

2O

10

0

A

cJ1

I
I

I
I

l

// A

/ g3
/

/
I

I

I
I

I
I
I
I
I
I
I
I
t
I
I

Components of optimal

initial vector.

I I I I

LE GTH F OPTIMIZATION INTERVAL

F±g. 6
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I I
1 2

LENGTH

Components of optimal
initial vector.

^

OF

I I I
5 4 5

OPTIMIZATION

! I
6 7

INTERVAL

Fig. 7
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•05N = T

N

z (_(.O}k)
k=O

- _(.o5_I(k-1)))2
N

z (z(.OSk)
k=O

- _(.05kl.osk))2

-5

1.0

1.9'

2.0

2.5

3.0

3.5

4.0

4.9

5.0

9.5

6.0

6.9

7.0

7.5

.O2

5.37

48.99

i34.88

212.03

253.13

267.85

271.

271.72

271.74

271.89

272. i0

272.29

272.43

272.52

.01

3.42

36.93

112.23

184.ol

223.59

2_.o3

241.47

241.86

241.89

242.03

242.25

242.44

242.58

242.66

Fig. 8
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OPTIMAL APPROXIMATION

10

8

6

4

2

0

-2

0
I I I I I

1 2 3 4 5
TIME

I
6 7

Fig. 9
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•05N = T Z

k=O

(z(.ogk)- z(.09k 17.)) 2

N

Z (z(.OSk) - _(.05kl2)) 2
k=O

.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

68.99

93.42

146.19

150.75

175.06

203.22

217.07

220.94

221.46

221.49

221.62

221.83

222.02

222.17

222.26

26.43

48.18

60.57

I03.18

208.78

297.47

342.65

359.62

364.64

365.8O

365.97

365.98

365.99

366.oo

366.02

Fig. i0
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OPTIMAL APPROXIMATION

"IO

8

6

4.

2

0

2

/

I
0

I I I I I
"1 2 5 4 5

TIME

I

6 7

Fig. !i
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BEGIN

REW 5

LOAD Zt, T,ND, F, H,XC,

ETPHI Ft TtPHt

EQUAT Zl,Z2,

HEAD IB_ING _ Y. Y.

MULT H,XCt YC,

_IJRT Y.Y_, vT,

MULT YT,YT, Y2,

A_ 7_Y_, 7_.

JUXTC YC Z2 Z3

RINT . ZI Z3 ERR

MULT PH XC XC

A_ 71t Tt 71,

IF NDtZ1,HEAD 1

Zl I I

0

T 1 I

,05

ND I

7,,5
F 3

-.B o
0 0 0

H 1 3

I. I. I.

XC 3 1

61.21139 -113.73065 55.368904

r

r

Flg. 12

-3,

0 -loL
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•09N = T _2(t It)Zz z  2(t17)

.5

1.0

1,5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5-5

UoU

6.5

7.0

7.5

.2.10-5

•18

1.20

5.45

9.10

9.86

lO. 1

ll.5

13.9

16.3

18.2

19.5

20.3

20.8

21.i

9365.

9368.

9371.

9_72.

9375.

9377.

9377.

9378.

9380.

9382.

9384.

9_6.

9387.

9387.

V0 = i017 R = 1

Fig. 13
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12
OPTIMAL APPROXIMATION

A

Y

10

8

6

i

2-

O-

0

y (o) = 63.3

Vo = 10 ]7

I I I I I I I
] 2 3 4 5 6 7

TIME

8

Fig. 14
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BEGIN

REW 5

LOAD Zl, D,PC,T1,LF,VO,LH, R, Q, I,XC,ND,N2,N3,RlqR2

EQUAT I° 31Zlw72.71.73.

ETPHI LF,TI,PH

SUBT ZltTl_ .MT,

ETPHI LF,MT,HP,

HEAD 1BRING 5 Y, Y,

SAMPL PH,VO,LH4 R, Q, D,PC, V0, K,AL,

MULT LH,XC, YC

SUBT Y,YC, YT,

MULT YT,YT, Y2

ADD Z3 Y2 Z3

MULT K,YT, i,

MULT PH,XC, 2,

ADD I, 2, XC,

MULT HP, 3, 3,

MULT 3,XC, GC,

MULT HP XC ?

MULT LH ? YC

SUBT Y YC YT

MULT YT,YT, Y2

ADD Z2,Y2, Z2,

TRANP GC, GT,

TRANP XC, XT,

JUXTC GT,XT, 4,

JUXTC 4,Z2, B,

JUXTC 5 Z3, 6,

RINT ZI, 6, X,

ADD ZI,TI, Zl

IF ND,ZI,HEAD 1

IF ND,N2,HEAD 2

EQUAT N2,ND,RI, R,

IF ZI,ZI.HEAD t

HEAD PIF ND,NB,HFAD 3

EQUAT N3,ND R2, R

IF ZI,ZI,HEAD 1

HEAD 3END

ZI I !

0

D 1 2

0 ,05

pc I 4

0 0 0 i,

T1 1 I

.05

LF 3 3

-,8 0 0 0 -1,5

0 0 0 -3.
VO 3 3

i000, 0 0 0 I000,

0 0 0 1000,

LH i 3

Fig. 15

- }_39 -



I. I. i.

I •

0 3 3

o 0 0 0

0 0 0 0

I 3 3

I, 0 0 0 1,,

0 0 0 1,

XC 3 i

0 0 0

ND 1 I

I,

N2 I 1

3,,

N3 1 I

10,,
t

I_i 1 i

0

R2 I I

I,

Fig. Z9
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.05N = T Z _2(tlt) 7._2(t ll0)

.5

1.0

1.5

2.0

2.5

3.0

3.9

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

.013_

3.42

3.42

3.42

3.48

4.77

9.26

16.4

23.8

29.8

34.0

36.6

38.1

38.9

39.3

47457.

47501.

47503.

47503.

47503.

47504.

47509.

47516.

47524.

47530.

47534.

475_.

47538.

4753_.

47539.

V0 = i000 R = 0 on [1, 3]

Fig. 3_6
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12
OPTIMAL APPROXIMATION

A

Y
10

8

6

4

2

(o) : 154.5

R=O on [1,5]

/ 1 1 i -

TIME

Fig. 17
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BEGIN

LOAD T, F,ZI, H, P,P2,X0,11,Z3, D,PC,ND,

REW 5

PIZER ZI,P2,

ETPHI F, T,PH,

MULT H,PH, G,

MULT G,PH 2

MULT 2 PH I0

MULT IO PH 20

MULT 20 PH 30

MULT 30 PH 35

MULT 35 PH _0

MULT 40 PH 45

JUXTR H G 3

JUXTR 3 2 4

JUXTR 4 10 11

JUXTR 11 20 21

JUXTR 21 30 31

JUXTR J1 3b 36

JUXTR 36 40 41

JUXTR 41 45 46

T#ANP 46 5

MULT 5 66 6

PSEUO 6,+ P RK PRINT

INVRS 6,

MULT 6 P PP

MULT 6 9 PQ

BRING 5 Y,Y0, Y,YI, Y,Y2, Y,Y3, Y,Y4, Y,Y5, Y,Y6, y,YT, Y,Y8

JUXTR YO,YI, 7

JUXT# 7 Y2 8

JUXTR 8 Y3 12

JUXT_ 12 Y4 22

JUXTR 22 Y5 32

JUXTR 32 Y6 37

JUXT# 37 Y7 42

JUXT# 42 Y8 47

MULT 5 47 8

MULT P 8 X0

RINT PP IP PQ I I XO XU, 6, w

BLOT 2

TRANP PH, MT

TRANP H HT

MULT PT HT TR

MULT PT TR TR

MULT PT TR TR

MULT PT T# TR

MULT PT TR TR

MULT PT TR TR

MULT PT TR TR

MULT PT TR, TR,

SUBT ZI T MT

ETPHI F MT HP

MULT H HP G

Fig. 18
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ADD Zl T Zl

ADD ZI T ZI

ADO Zl T Zl

ADD Z1Y T ZI

ADD ZI T ZI

ADD Z1 T ZI

ADD ZI T ZI

ADD ZI T ZI

HEAD IBRING 5 Y Y

SAMPL HP P G I I Z3, D,PC, P, K,AL

MULT PT TR TR

MULT P TR K

TRANP TR TT

MULT TT XO YC

SUBT Y YC ER

MULT K ER xE

ADD XO XE xO

TRANP XO XT

ADD Z1 T Zi

RINT Z1 XT X0

IF ND Zl HEAD I

END

T i 1

,05

F 3 3

-i,5

0 0 0

ZI 1 i

-3,

0

H 1 3

lo Io

P 3 3

1 •

0

0

P2 i 1

I,

XO 3 1

0

Ii l 1

I,

Z3 3 3

0

0

D I 2

0 ,05

PC 1 4

0

ND 1 1

7,

i •

Fig. 18
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BEGIN

LOAD Zi, T,ND, F, H,XC,

_EW 5

ETPHI F < T PH

EQUAT ZI*Z2,

HEAD 1B#ING 5 Y, Y

MULT H XC YC

SUBT Y YC YT

MULT YT YT Y2

ADD Z2 Y2 Z2

JUXTC YC Z2 Z3

JuXTC Z3 Y Z4

#INT ZI Z4 ERR

MULT PH XC XC

ADD ZI T Z1

IF ND Z1 HEAD 1

END

71 1 1

0

T 1 1

ND 1 1

7.

F 3 3

--.8 --i,5

H 1 3

I- I. 1.

XC 3 1

79,965997 --153,58624 78,573582

Fig. 19
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10,
OPTIMAL APPROXIMATIONS

8

6

4

B

0-

-2 "

-4 I

0

/ \

I

2

^

y(tl2)

\
\

\
\

\
k
-\

\

I I

3 4
TIME

I

5
I

6
I

?

i_-g•_,.. 20
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.osN -- m z z_2(tl 2 ) z _2(t 17)

.5

1.o

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.5

7-0

31.8

52.6

66.2

io2.4

197.4

278.0

318.7

333 -7

337.9

338.8

338.9

339.O

339-0

78.5

107.0

155.4

159.5

182.5

206.6

217.6

22O -3

220.6

220.6

220.8

22!. !

22L.3

221.4

Fig. 21
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10

B

-2

m

4-

2-

O-

Optimal 3rd. order
approximation

I - I I I I I I l

0 1 2 3 4 5 6 7
TIME

Fig. 22
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Optimal 4th. order

Y

8

6

approximation.

4

2

0

0
I
1

I
2

I
3

TIME

I I I I
4 5 6 7

Fig. 23
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CHAPTER XVII

MULTI-PJITE SAMPLI_3

1. Description__of the Problem: Frequently information about the state of

a dynamical system is available only at a discrete set of points in time.

This fact has given rise to the study of discretized systems. To complicate

matters, however, there are times when sample and hold elements in a system

operate at two or more different frequencies.

In this chapter we will examine how we may produce an optimal control

for a system having an internal sampling period distinct from the period at

which control can be changed.

Parenthetically, we will examine the relation of the continuous

performance index to sampled ones, with and without the additional (internal)

sampler.

2. Theor Z and references: In addition to Chapter VIII# see R. E. Kalman

and J. E. Bertram, "A Unified Approach to the Theory of Sampling Systems"_

Jour. Franklin Institute, vol. 267, May 1959.

3. The Specific Problem: We take the flow diagram of Fig. l, where

- lo(s- i)
Sl- s(s2 +2s + 8)

1

S 3 --_F-_-_)(s + 4)'

and synthesize it by the flow diagram of Fig. 2, having
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F _.

m

0 0 0 0 0 0 0

1 0 -8 0 0 0 0

0 l -2 0 0 0 0

0 0 0 0 -12 0 l

0 0 0 l -7 0 0

0 0 1 0 1 0 0

0 0 0 0 0 i0 0

"lo]
-lO

0
G=

0

0

0

0

We wish to optimize this continuous system with respect to the per-

formance index

O0

x'(o)_(o) = I [(y + 2_)2 + .OZ_]dt,
0

having

Q = diag (0_ O, O_ O; O,

R = .O1.
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Having done this we will introduce a sampler on the control with

period T and examine the performance index matrix P_

x'(O)P_x(0)
oo

z _'(i_)_Qx(i_)+ u'((i-1)_)_Ru((i-1)_)
i=l

as • goes from 2_ = .735758883 to zero. By the reasoning given in Chapter XI
e

we realize that in the continuous control problem we may replace Q by

Q = diag (03 0, 0, 0, 0, [|l

L0

the discrete case as well.

we will see if this can be done in

We will then, using our multi-rate program introduce a new state vari-

able x8 to describe a sample and hold element operating at a period of 2

between x7 and x4. Because the two sampling periods are incommensurable,

the transition matrix between control points is neither convergent nor periodic,

so the optimal gains do not converge. We will take a total interval of 25

over which to optimize.

The open loop transfer function is

lO0(s-1)(s+3)(s+4)
s(s2 + 2s + 8)(s_ + 7s3 + _2 _ lO)

having poles at 0, -1 + _-7, _ .75, ~ -4.75.

We will assume that both sample and hold elements operate at t = 0.

4. Results: Using the program appearing in Fig. 3, we ran the free motion

which gave 3 as expected 3 stable behavior in Xl, x2, and x 3 and instabi-

lity in the other components.

We then computed the optimal control for the continuous system 3 using

the program in Fig. 4. This converged in 9.47 seconds to a performance index

with diagonal elements:
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Pll = 16.233963

P22 = 16.121959

P33 = 14.866118

P44 = 4.857859

P55 = 4.407092

P66 = 1822.1928

P77 = 12.586129.

Using the program in Fig. 5 we computed sampled control for various

values of _. This generated the following table illustrating how the sampled

performance index converges to the continuous one

Pll P66 P77 Time for convergence

•7257588 39.500149 3872.7168 24.4_2950 12.51

•36789 44 20. 613631 2244.5554 l_.730421 ll. 40

•18393972 17.365082 1935.2903 14.137003 ll. 04

•09196986 16.639 765 1864.3951 13.795817 10.66

•04598493 16. 454767 1846.0598 13.716736 10.19

•022992414 16.384925 1838.8439 13.683984 9.78

•011496207 16.340233 1833.9 453 13.655727 9.46

It appears from the experimental results in this cas% that the

Sampled control is also independent of whether the error is (y + 23) 2

y2 + 4 2.

or

Our multi-rate program appears in Fig. 63 three runs were made with

this and checked by using the ordinary sampled program.
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t

The first, with TI = T2 = .73575888 was checked with Fig. 7 and

showed agreement to five decimal places. This simulates operation of the

internal sampler infinitesimally prior to the control sampler.

The diagonal terms of P for this system were,

Pll -- 23.758

P22 = 22.105

P33 = 14.325

P44 = 6.5906

P55 = 4.3283

P66 = 2103.97

P77 = 7.9393

P88 = 1.9325.

The remarkable point here is the decrease in the performance index

caused merely by providing an extra, constant state variable prior to x4.

Here the diagonal terms of P were much smaller, probably because,

once the loop is broken, the system is asymptotically stable.

Pzl = 9.9194

P22 = 8.8411

P33 = 4.7264

P44 = 2.6170

P55 = 1.4585

P66 = 776.93

P77 = 2.5821

P88 = 2.9742.
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The second with TI = .73575888 and T2 --50 was checked with

Fig. 8 and showed agreement to four decimal places. This simulates failure

of the internal sampler even to operate. Notice that even though the state

of the system will not go to zero (if xs(O ) # 0)3 the performance index is

finite.

The third case is that of our problem 3 T1 = .73575888, T2 = 2.

This gave a performance index of

Pll = 12.631

p_= 11.175

p33 = 5.6149

P44 = 3-3O69

P55 = 1.7685

P66 = 971"03

P77 = 3.0681

P88 = 2.825O.

In Fig. 9 appear the transients, from unit initial condition on x7,

of the output as given by the free system_ the controlled continuous system_

the controlled discrete system 3 and the controlled multi-rate system.

In Fig. lO appear the optimal control function required for continuous

control and ordinary discrete control of the transients in Fig. 93 with the

given performance index.
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t Ordinary Multi -rate

0 -i.091 -.219

2
1.610 .475

4
e -i.llO -.514

6
e •954 .421

8
e - 6e2 -.3O4

lO
e .404 .221

12
"_" -.237 -.123

14
--_ .146 .071

16
-_ -.085 -.045

18
-_ .052 .025

2O

e = 7.358 -.030 -.019.

Surprisingly enough, the gains for the multi-rate did not converge,

to the extent that variations were only about 10% of some average value.

It is possible therefore to compare the steady-state gains for the three

controlled runs.
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k1

k 3

k4

k5

k6

Continuous

%.65

55._

46.99

3O.26

25.58

555.l

40.95

Sampled

1.727

1.464

1.054

.8225

.6168

14.63

I.o91

Multi-rate

.9915

.7168

.2558

.41o6

.1835

6.2o9

.2z86

.4637.
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BEGIN

LOAO F T ! 71 ND

ETPHI F T PH PRINT

HFAD I_INT 71 • I X

MULT PH I I

ADD 7] T Z1

IF ND ZI HEAD I

END

F 7 7

Q

I • -8,

Q

-12•

0 1,

0

0

I •

mT•

1• 1 •

0

T 1 ,, 1

.25

17 "7 7

Q

| •

I0,

I •

I •

0

0
I•

i •

Z! i 1

O

I Q

ND I I

24.9995
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BEGIN

LOAD TT, D.DI,PC. F. Go QI_II7_.T1.XO.NH._I._7.XX

SUBT ZR4 Fo it

T_ANP F, FTt

TRAMP G9 GT*

M|II T _I.GT_ CI

MULT G, Co 5t

NORM 5, NS_

pSEtJn Nn_ on.o_

MULT PQ_N5o Mlt

OECnM M1. _.SJ.E_.DF- E=BK.

MULT S, Oi O_

MIJL T _.J. _. _.

MULT SJt Ct C,

RIOT Nh.

JUxTC 1 , 5, 2,

JU),C TC O.FTt 31

JuxTR 2 t 3 • I::}Ht

M _C_E) M r'_[-i ; I%!p=

PSEUO NPt NPtRK

MULT NP;TT; T

RINT PH tl3H

T,DI, 4,

ADO 4, D, DI

RICAT O,PHt C, DtPCiXXt P, K,AL,

RINT PtPER K, K

W_ITE THE PRECEDING MATRICES WERE THE MATRIX P OF THE

WRITE PERFORMANCE INDEX AND THE FEEDE_ACK G_II'J MATI_IX K.

MULT

SUBT

G, K_ GK,

F.AK. CF,

ETPH! CF,TltPl,

HEAD ]MULT K,WOl K¥.

JUXTR XO,_Zt 6_

JUXT_ _,_X_ ?Q

RINT RI, 7_ X

MULT PI_O, XO,

ADD RI,TI_ RI,

IF ND,RI,HEAD i

IF TT,TT,HEAD 2

WRITE

WRITE

HEAD 2END

RICAT CONVERGENCE TEST _EMOVED.BECAUSF WITH Q = 4,1

_I = lO0_ CONVERGENCE WAS NOT ACHIEVED,

1 1

8,

3 i

,0001 0

3

4

I00,

F 7

I

g -i,
I

100, l

7

-i Q(;}Q,

IOOOt

Fig.
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JULY 10. 1965

BFAIN

LOAD T. F. G. D,PC.RI.QItRZ.ZI oND.XO

HFA_ 2MtJLT T.pl.

MULT T,QI, Q

FAT F_ T_PH,!N

MULT IN G GM

TDA_P _, FT

TRANP GM GT

FhlJAT h p

SAMPL FT, PoGT, _, Q, OoPCe

T_ANP KT K

SUBT PE Q P

DINT P DFP K K

LOAD T

IF T_ T_A_ 2

END

1 1

,09196986

F

0

Q

0

,, I I

0

-12•

0

0

0

n

G

It").

0

D

,0001

PC

10.

R

7 7

-2.

I •

I •

I •

--7o

I•

PE,KT,AL

!0 __

T 1

-1(_• C}

1 2

,18393972

1 4

I0,

I I

|• i000,

-8;

i •

•Oi

Q

0

0

? 7

,04

O

RZ

0

i 7

I •
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Fig. 9
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71

0

1 !

ND

26.

I7

l.

7

1 •

1 •
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0

O

0

Ii

T 1 1

*04598493

T 1

.022992415

T l

•0114962076

T !
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BEGIN

LOAD SI,S2,NDoT1,T2, Q, Rt F,-_,TO, D.PCoKO, A,XO._7 n2 _P _t cn

LOAD CE

REw 5

WEF 5

RFW

EQUAT $I, I,$2, 2,ND, T,NDoC2,

HEAD ]A_ TI, 1, 1,

IF ND, leHEAD 1

_LJRT 1,T1, I

SUBT ND, le T3

MtII T T_. 0" POe

MULT T3 R RI

Mill T TI _. _1

HEAD 2ADD T2 2 2

IF Nn _ WFA_ 2

SUBT 2,T2e 2,

F_T FeT_.D_mp?e

MULT P7 Ge P8

M¢ll T D? p_ pQ

MULT D2 P8 P5

IF ?. 1 ,HFA_ 3

SUBT T, 1 T3

EAT F.T3.PHelN

MULT IN G G3

T_ANP PH. _H

TRANP G3 GM

SAMPL PH._O,_M°_IoQ1. _.PC°

TRANP KI K

MtJ( T T1° P _|

SAVE 5 K, K

EQUAT 11 T,

BE CAREFUL HERE WITH T3 IF ND

IS A MUI TIPLE OF T!:

THFqF TW O !MSTDIJCTIO_!S A_E A

SAVING IF T1 IS GREATER THAN T2,

DNe_]eAI e

SUBT 1 T1 1

IF ,5,oS,HEAD 4

HEAD 3SUBT T, 2, T3,

EAT F°T3oPH_ IN,

MULT IN G G3,

EOUAT 2 T

SUBT 2 T2o 2e

HEAD 6IF I 2,HEAD 5

MULT PH,PS, G2,

ADD G2 _2 G3

MULT PH P9 PH

EQUAT 2 T

SUBT 2 T2 2

IF _5,.S,HEAD 6

HEAD24MULT TI, _, RI

EQUAT TO C2

IF ,5 ,5 HEAD 4

HEAD 5SUBT T, I, T3,

EAT FeT3,PI IN,

MULT PH,B2, P2

MULT IN G, Gl

i

Fig. 6
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SAVE

_URT

IF'

HEAD 4.IF

HEADIOIF

SURT

EAT

MLJI T

MULT P2 GI q G2,

ADr) G? r_.-i _3 •

MULT P2 Pl PH

FQUAT i T

TRANP PH PH

TRANP G3 • AM

SAMPL PH PO GM R! Q1

TRANP KI K

5 K, K

I,TI, I,

C2 ND HEAD24

TO, I ,HEAD ?

2 ! HE AD 8

T, I • T3,

F T3 PH IN

IN G G3,

TRANP PH PH

T#ANP A3 GM

SAMPL PH PO GM R1 Q1

TRANP K1 K

D PC_ PO,K|,AL,

D PCo PO_KI,AL

SAVE 5 K K

EQUAT 1 T

SUBT ! T1, 1

IF ,5,.5,HEAD 4.

HEAD 8SUBT T, 2, T3

EAT F T3*PHqINo

MULT IN, G, G3,

EQUAT 2, T,

SUBT 2 T2, 2

HEAD23IF _ 2 HEAD22

MULT PH P5 G2

ADD G2 G3 G3

MULT PH P9 PH

EQUAT 2 T

SUBT 2 T2 2

IF ,5,,5 HEAD23

HEAD22SUBT T, I, T3,

EAT F T_ Pl |N

MULT PH D2 P2

MU_T IN G G_

MULT P2 G1 G2

ADD G2 G3 G3

MULT P2 Pl PH

EQUAT l T

TRANP PH, PH

TRANP G3, GM

SAMPL PH,POtGM RI Q1 _ DoPCo PO,K| _AL

TRANP KI K

SAVE 5 K, K

SUBT |_TI, |

IF ,5,,5,HEAD 4

HEAD 7SUBT PO,QI, 19,

RINT 19 19

Fig. 6
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IF D SI,HEAD 9

_AVF RICO , I<

IF ,5,,5,OUT 1

HFAD.AIFGHAT TO, 1 o

IF D S2 ,HEAD42HEAD10

HFAD/,PM[JI T - _ T2, T3,

MULT EP T2 S

SURT TO, £ £

HEAD44SUBT 2 S T4

IF T "_. T.', • NF AO/.I. 3

ADD T2 S S

IF -_ e6 HFAF3Z'A

HEAD43EQUAT S 2

IF .5 .5.MFADI h

HEAD 9MULT -5 T1 T3

SLJR T T TO • T4.

I F T4 T3 HE AD4 ]

OLJT 1 f_" _.$I .I-IFAr) I ]

EOUAT S 1 , i

HEAD11EQUAT T1 ,, I ,

HEAD1PIF r) SP.MF&D[3

EQUAT $2 2.

IF o_ .__ MF'AI"3]4

HEAD13EQuAT T2., 2.

HFAD I .', R c,R 1 _i

EQUAT TOt Tq, TO,PT,

RPING 5 I<, _ce

ADD PT Pl PT

MI. JI T K XNo U

SUBT RZ U U

B_£P P 5

HEAD 19JUXTR K RZ XI

IUXTR X ! )_0 XP

J_JXT# X2. !_Z X3

JUXT# X3 U X4 __

HEAD 1 t% I F

SUBT

E('OLJAT

EAT

TRANSFER TO TRANSIENT,

i

BEGIN ."_R.ANSIENT,

RINT T, X4,MAT

HEAD18IF PT, I,HEADI_

IF PT, 2,HEAD16

IF PT,ND HEADI7

SUBT PT T, T3,

EQUAT PT T

ADD PI,PT, PT,

EAT F,T3,PH,IN

MULT IN G G3

MULT G3 U GU

MULT PH XO XT

ADD ×T _U XO

IF .5 ,5 HEAD19

2 Mn MFAnI7

2. T T3

T

F T3 PH IN
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ADD

MLILT

MULT

MtJl T

ADO

MtJLT

IF

HF_I_TI _

IF

_LJRT

EQUAT

ADD

EAT

MLJI T

MULT

MULT

ADD

BR ! NG

BSR

MULT

SUBT

IF

HEAD ! VSUBT

EAT

MULT

MULT

MULT

ADD

JUXTF_

JUXTR ^ i X0

JUXTI_ X2 _Z

JVXTR X3 V

iqlNT ND

ENJ_

2 T2 2

IN _ G3

G3t Ut GUt

_H Y_ _T

XT GU XT

D CD HEAD18HEAD19
1 _.H_A_I_

1 ND HEADI7

1 Tt T3

1 T

I TI ]

F T3 PH IN

TN _ G3

G3 U GU

PH _0 XT

XT GU XO

5 K, K

2 5

K XO. U

RZ_ UI U

D CE HEADl_HEAD19

NO To T3o

F T3tPH IN

IN G G3

G3 U GU

_H XO XT

T GU xo

RZ Xl

X2

X3

X_

X4oNAT
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0

Zi i i

0

ND i !

25,
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Q 8 8
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Fig., 6
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BEGIN

LOAD T. FQ G. D.PCoRI oQII#Z.Z1 .NDQXO D2

HEAD 2MULT T,R1, R

MULT T.QIt Q

EAT F. TIPH.IN

MULT IN G GM

MULT D2 PH PH

NULT D2 6M GM

TRANP PHi. FT

TRANP GM GT

EQUAT Q P

SAMPL FT. P.GT. _. Q. D.PC.

TRANP KT K

£UBT PF Q P

R|NT P PER K K

LOAD T

PF.KT.A[

IF To T,HEAD 2

ENr)

T 1 1

• -/3575888

F 8 8

0

I •

lo -2•

1 •

0

t

--7•

-12,

IQ,

G 8 1
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D 1 2
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Fig. 7
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HEAD 2MULT T,R!, R

MUI T T.(31 •

EAT F, T,PH, IN

Mtl! T IN _ _M

MULT D2 PH PH

MULT D,o F.NI GM

TRANP PH _ FT

TI_A NP _M F_T

EQuAT Q P

¢,_MI::)I F'T. I::,.GT. D. _, _eloC,

TRANP KT K

¢,1 JRT PP" Q P

RINT P PER K K

I r_A 0 T

BEGIN

LOAD Tt F, Ge D,PCIRI,Q1Q_ZoZI,NOQXO D2

PE_KT_A t

IF T, T_HEAD 2
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CHAPTER XVlll

MODEL-FOLLOWER CONTROL

i. Description of the Problem: Given a system

(i.i)

=Fx +Gu

y=Hx

and another 3 homogeneous system

(1.2) z = Lz

we wish to obtain a control u(t) which minimizes the performance index

T

[flY- ZllQ + llull2]dt-
O

2. Theory and References :

L, then flY - zIl_ can be represented asby

IIEFA A

X = 3 X =

0

Our method will be to augment the system matrix
^ 2

Q

m _

H'QH -H'Q I

-QH q

Notice that this augmented system is not completely controllable and we

may expect problems with the behavior of the performance index because of this.

Fortunately 3 in this application L is a stable matrix which will mitigate the

problem.
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3A. "T_hheSpecific Problem: This problem is taken from the paper

"Synthesis of Feedback Controls Using Optimization Theory" by F. J. Ellert

and C. M. Merriam III.

Examination of the aircraft system leads us to

F

m u

- .6 - •76 •OO296875 o

i. 0 0 0

o lO2.4 -. 4 o

0 6 1 0

S

m

- 2.375

0

0

0

where _ = Fx + Gu.

In addition we have a time-varying model to follow which necessitates

enlarging the system by the direct sum with

]

Xf

__oj

B u

- .2 0

0 -- .2

B

rx5]
x_

O__t__15

xs(o) = too

x6(O) = - 20

and

_x6_I 0

15 -_t -_20
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The requirement that a second order system be used after t = 15 •

is the only reason for using one prior to that time. It may appear that this

does not satisfy the altitude requirements as specified in the paper. How-

ever a small amount of analysis shows that the differences are less than one

percent since

i00 e = 4.9787071

and

- 20 e -'3 = _ .99574141

compared with the stated desiderata of 5 and

as we simulate it does have x5(20) = O.

The error function may be written as

_ 2T,= %(x_ -x_) 2 + e3(x3 _6)

- i. Furthermore the system

2 I 2 u2

with a terminal weighting of

i IlxII_15" -=5(%T(x_ - x4)2 + '_(Xr - :%)2 + ,_2_(x2 _ 20)2)

where 2° can be written as

te rm as

2

57- 29 57795

radians and hence we may write the

_2T(X2 + .034906586 x6)2.

Using x 6 to specify the 2° terminal value of x 2 is of course

purely coincidental_ we can do this because x6(20 ) is a known constant.
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Considering Case III in the paper, we define

Q

99. o o o o

o o o o o

0 0 .0001 0 0

0 0 0 .00005 -.00005

0 0 0 -.00005 .00005

0 0 -.0001 0 0
m

for 15 _ t _ 20,

u

0

0

-.O001

0

0

.0001

and

Q __

S

99 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 .00005 -.00005

0 0 0 -.00005 •00009

L 0 0 0 0 0

for 0 _-t _-153

0 0 0 0 0

0 lO. 0 0 0

0 0 .01 0 0

0 0 0 .OO1 -.001

o o o -.oo_ .ooi

o .34906986 -.Ol o o
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4A. Results: Running this on the program appearing in Fig. l, we ac_eved

results agreeing with those appearing in the paper. For instance

kn(O)= 4.18

k (O) = 2.20

kl3(O) = .00675

kl4(O) = .00298

kil(16 ) = 4._2

k12(16) = 3-25

k13(16)=

kl4(16 ) = .00642

The graph of altitude for the high, nominal, and low initial condition is

in Fig. 2. As would be expected with a relatively inaccurate integration

tool such as ASP, we do not get the same pitch angles at termination as

the paper. However, the errors are less than .003 °.

I.e. lUlmdeg, e(2o.)deg. h(20)ft. _(20)ft/sec. IGImdeg.

i .4 - .033 - .103 - .76 1.0

2 16.3 .003 - .025 - .82 1.8

3 32.8 .038 .053 - .87 3.

Having obtained these results, we attempted to improve upon them.

There were two points at which improvement was possible. One was at the

beginning of the approach where the initial (.5 sec) transient gave

extremely large control values compared with the remainder of the trajec-

tory. The other was at the terminal time, when it appeared that state

variables could be closer to the desired values. We felt that these

desiderata could be accomplished because of the extremely low magnitude

of control used everywhere except initially.

We mention here one confusing point in the article. Initial angle

of attack 3 _, is suppose_ to be 14 °, yet in each of the three initial con-

ditions given, e = y, hence (z = O.
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In fact the condition that

 1(o) (e(o)-
s

be zero requires that

_(01 = 0(0) - r(o) = o(o1 - _ = o.

Under these circumstances we deleted any consideration of _3 though it

will be found that if 5(. ) is satisfactorily bounded in the article 3

it is also satisfactory in our runs.

To attack these problems 3 we needed a more flexible program; one

capable of modifying the index weighting and the control gains. In addi-

tion we wanted more printout at the critical initial and terminal times.

Using some hindsight we reran the problem with the program in Fig. 33 to

check agreement with results using Fig. 1.

We then increased S (terminal weighting) by a factor of 100 by

removing the two M U L T 0 T 3 S_ S instructions 3 to improve terminal

conditions. This affected the initial transient very little but gave the

following terminal values.

z.c. lUlm e(ao) Ioclm 

1 .4 1.72 - .007 - .93 1.1

2 16.1 1.73 - .005 - .93 1.8

3 32.5 1.74 - .003 - .94 3.

This now looks very satisfactory except for the large control excur-

sions. Notice that with increased weighting terminal conditions appear

independent of initial conditions.

We then attempted to reduce the control requirement by reducing Q

in the early part of the run 3 using the program in Fig. 4. This reduced

Q by a factor of l0 -3 on [13 2] and by an additional l0 -3 on [03 1],

and gave the following results:
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•r.c. lulm e(2o) h(20) 1;.(20) Io lm 

1 - 13.0 1.73 - .006 - -93 - 4.8

2 3.3 1.73 - .007 - .93 2.5

3 19.1 1.73 - .007 - -93 6.2

Since we have lowered Q by a factor of l0 -6 and still have a

fairly significant gain matrix, we infer that F has at least one un-

stable eigenvalue and therefore K cannot be indefinitely reduced by re-

ducing Q. Despite the fact that u is within the bounds,

- 35° -_u -_ 15_ prescribed_ we would like to show what can be done in such

a case if the bounds were, e.g. -8 ° __ u -_ 8°.

An optimal system cannot be made to satisfy because K cannot be

sufficiently reduced, but an ad hoc procedure of reducing u to the bound

may very well provide the answer. This is particularly true in a case such

as this where most of the control magnitude is used in the initial surge.

To approximate the effect of control stops we used the program in Fig. 5,

multiplying K by k(t) (k(0) = .37, k(.7) = l) before computing control.

This gave the following results:

I.c. lUlmax e(2o) h(20)  (20) IOClm 

1 - 4.6 1.73 - .006 - .933 - 2.2

2 2.8 1.73 - .007 - .933 2.6

3 7.8 1.74 - .007 - .934 5.4

The altitude profiles for this run appear in Fig. 6, in Fig. 7 and 8 we give

plots of _ and k4 as we computed them from Fig. 1 and for the final run

(K modified) as computed from Fig. 5.

3B. T__heSpecific Problem: This is an aircraft problem received in a private

communication from J. S. Tyler_ Jr. It is very similar to the one described

in J. S. Tyler, Jr., '_he Characteristics of Model-Following Systems as

Synthesized by Optimal Control_" IE_ Trans. on Automatic Control_ vol. AC-9,

No. 4, 0ctoberj 1964.
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The plant is specified by

r

0 i

o -2.93

.o86 o

0 - .049

0

-4.75

- .ii

2.59

0

.78

- -39

G

0 0

o -3.91

•o35 o

-2.53 .31

m ___

and the model by

0 i 0

0 -i. -73.14

.086 0 - .ii.oo86 .o86 8.99

o]
3.18

-i. ]- .49

We define the performance index by

j" [llyll_ + t1_il23dt
0

where y = Hx_

H = [I4, -I 4] and
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Q=SI 4

4. B Results: Let Kfb _ Kff denote respectively the gain matrices from the

plant and from the model. Then Tyler gives the values

F2318 12I-2.21 -1.83 -7 .Ol

I .i04 .377 -3.63 4.16 IKff = 2.035 2.211 -15-3 2-59

Using the program appearing in Fig. 9, we calculate the matrices

- .253 - .185 1.584 -2.342 iKfb : -2.214 -1.827 .700 .010

I .104 -377 -3.630 4.161 IKff = 2.035 2.211 -15-309 2.589
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JUNE 28, 1965

BEGIN

REW %

_EW 6

WEF 5

LOAD F, G,TI.,T2,F1,GI,T3,20*DT,TS, Q,Q1,TQ*DS,

_EW

WEF

SAVE

P.EW

Hr--ADZ 1SU_T

SAVE

IF

HF AD22SUBT

SAVL.

IF

LOAD

WR I TE

5

6

_T1, I , F, F, G, G, Q, Q,T_, T,F1, FiGll Gt_l, _,T3, T,

6

2b,DT, 2U

620, T,

2O,TSiHEAD21

20,DS, 20

620q I,

20,TO HEAD22

ZO,,5,ON,D2,D31PC,RZ,ZR*TW,TL,_I, S,XX,TR,XO*TI

OPTIMAL FEEDBACK CONTROL

R 2_

_EW 5

P,EW 6

_EW 7

WEF 7

_GuAT TL, T,TL,TF,

F_AN_ TI, _T,

_:PING

MULT IT, C',
i_ULT 32,TI, G,

hIULT 2, S, S
Iv;ULI i'r S 3_

WULT 32 TI S

MULT TR, F, 32,

i_IuLZ 32,Ti F,

MULT TR, G G,

_Ew 7

i+i_LT W;,GT, _,

% T,TI, F, F, G, G, Q, Q, T,T2,

321

MULT C, S, K,

:_ULI b, I_, blq,

SUBT F,GK, CF,

SAVE ?CF,CF, K, K, T, T,

BRINE 6 T,PI,

SUBT ZR, F, MF,

TRANP G, GT,

MULT RI,GT, C,

MULT G, C, GC,

JUXTC MF,GC, TP,

T_ANP F, FT,

JUXTC O,FT, _T,

JUXTR TO,BT, PH,

ADD T1 T2 TI,

MULT ,5,TI T2,

EQUAT Pl, T,ON,CD, A I-'RIN'T T !:,4F__VqUST GUM= _b_.TWr_c_N TL

Fig. i
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SUBT TF, T, TU, AND THE LAST BREAK TIME,

EOUAT T,TF4

ETPHI PH TU,PI,HT,

MULT TU D3 _'34

MULT HT,D2_ 35,

ADD 34 35 34

RICAT S P1, C,3q,PC4XX4 S, K,AL,

RINT S, P

IF ZO,ZO,HEAD B

HEAD 5_RING % T,T1, F_ F G G O O T T2

_INT Tt, T

MULT IT, G, 32,

MULT 32 TI Q,

BSR 1 5

MULT TR, F, 32

MULT 32 TI F

MULT TR G G

MULT G I< GI<

SUBT F GK CF

SAVE 7CF,CF, K, K, T, T,

HEAD ISUBT ZR, F, r4F,

TRANP G GT,

MULT RI,GT, C,

MULT G, C, GC,

JUX-FC MF,GC, TP

TRANP F, FT,

JUXTC Q,FT_ BT,

JUXTR TP,BT_ pH,

ADD T1,T2, T1,

MULT ,5,T1, T2

HEAD 6IF P[,T2,HEAD 2

EGUAT T2, T,ZO,CD,

IF ZO,ZO4HEAD 3

HEAD 2EQUAT PI, T,ON,CD

HEAD 3SUBT TF, T, TU,

EQUAT T,TF,

ETPHI PH,TU,PI,HT,

MULT TU,DB_ 3_

MULT HT D2 35

ADD 34 3E 34

RICAT S Pl, C,34,PC, S, I<,AL,

HEAD BMULT G, F, GK,

SU2T F,GK, CF*

SAVE 7CF,CF, I<, K, T, T_

IF TW, T,HEAD 4

HEADIOIF ,5,CDqHEAD 5

BRING 6 T,_I,

IF ZO,ZO_HEAD 6

HEAD 4BSR 4 7

BLOT IT

BEING 7 T,TI,CF,CF, I(, I<, T,T2,

BSR 7 7

ADD T1 ,TZ, T3,

Fig. I
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MULT ,5 T3 HT,

SUBT HT T2 TU

MULT TR XO XO

EQUAT HT T

ETPH! CF,TU,PH,

MULT K,XO, -U,

MULT K,TR, KR,

MULT TI,XO, X,

TRAMP TR, ZK,

MULT ZK, S, 41,

MULT 41 TR S

RINT T2, S, P KR, I< X,XO -U,-U

WRITE THE PRECEDING WERE P, I<, X, AND -U AT INITIAL TIME,

MULT PH,XO, I,

EQUAT I,XO,ZO,CD,

HEAD 7BRING 7 T,TI,CF,CF, I<, I<, T,T2,

HEAD24GSR 7 7

IF T2,TI,HEAD g

SUBT T2, T, TU,

ETPHI CF TU,PH,

MULT PH,XO, XO,

EQUAT T2, T,

MULT TI,X04 X,

MULT l<_XO, -U,

MULT K,TR, KR,

JUXTR I<R*RZ, e_4,

JUXTR *4, X, "5

JUXTR _5 RZ _6

JUXTR _6 -U _7

RINT T, _V, INF

ADD TI4T_ T3

MULT ,5,T3 HT

SUBT HT* T TU

ETPHI CF,TU,#H,

MULT PH*XO

EQUAT HT, T,

×0,

IF T1,TL,HEADI2HEAD 7

,-_ 9SUDT TI 4 T* TU,

ETPHI CF,TU,PH,

MULT PH,XO_ XO,

'EQUAT T1, T,

BRING V T,T1,CF,CF, I<, 1<, T,TZ,

HEAD23BSR V 7

ADD T1,T2, T3,

MULT ,5,T3, HT

SUBT HT, T, TU,

ETPHI CF,TU,PH,

MULT PH,XO, XO,

EQUAT HT, T,

IF TI,TLIHEADI2HEAD 7

HLADI2SRING 7CF,CF, I<4 i<, T,T2,

SUBT T2_ T_ TU,

ETPHI CF,TU,PH,

Fig. i
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MULT PH,X0, 32,

MULT TI 32 X

MULT K,32 -U

MULT K,TR, _R

RINT T2, KR, K X, X -U,-U

WRITE THE PRECEDING wERE K, X, AND -U AT FINAL TIME•

END

F 6 6

--•6 --•76 •00296875 0 0

0 i• 0 0 0

0 0 0 102.4 -.4

0 0 0 0 0

i• 0 0 0 0

0 0 0 0 i•

0 0 0 0 0

0

G 6 1

-2•375 0 0 0 0

TI

T2 l

F1 6

I •

6

--• /0

1.

0

G1

0

U

--,2

6

0

U

1

.uuL_6875 £)

0 0

0 102.4

0 0

0 0

0 --•2

u u

0

0

-2.375

0

T3 1

0 0 0 0

u

I

-15,

20 1

DT

20.

1

._5

TS 1 1

IUoUb

Q 6

0 0

0 0 0

(3 0

0 0

U ,UUUU5

o

U

.0001

o

-.0001

-•oouub

0 -.00005

u -.ooul

o

0

o

0

o

.00005

o

.(3ooi

Q1 6 o

Fig. 1
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99. 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 •00005 --.00005 0 0

0 0 --,00005 .00005 0

0 0 0 0 0

0

TO 1 1

,05

DS 1 1

.5

ZO' 1 1

0

,,5 1 I

•5

ON 1 I

I•

D2 I 3

0 i. 0

D3 1 3

0 0 i.

PC i 4

0

R/ I 6

0

0 0 i•

0 0 0 0

ZR 6 6

U U (J (J U

0 0 0 0 0

0 0 u u u

0 0 0 0 0

0 0 U U U

0 0 0 0 0

0 0 O 0 0

0

JW i I

°0005

20.

_<i 1

I •

.0iiu_2346

0

U

0 • 17453P_93

U U

0 .0005

U U

0 • 17453293

0 0

0 D,

0

--•UUD

-.0005

--,UUUb

-.005

.UUU_

0 0

o G-

O • 005

O 0

0 0

0

0 0

XX 6

I.

6

0 u o o

Fig. i
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0 0 i, 0 0

0 0 0 .0 I,

0 0 0 0 0

0 i, 0 0 0

0 0 0 I, 0

0 0 0 0 0

I •

TR 6 6

1 •

0

o

0

U

0

i,

0

0

o

0

i,

0

o

0

1.

o

0

o

0

o

0

0

0

0

0

i,

o

0

0

lo

0

o

0

o

x• 6

0

0

0

0

80•

1UU.

--200

6

0

-,0625

0

U

0

IOU.

--20.

0

--,0781

-16,

U

0

(D

--20,

0

-.0c938

-20.

12CO*

0

0

0

-24.

IUO,

I00,

TI

0

6 6

i •

0

U

o

0

0

0

1.

o

0

o

0

le

0

0

o

I,

0

0

U

0

0

o

0

0

0

0

1.

0

o

0

I,

0

U

0

0

N 1 1

.25E4

,_. I I

2.

Fig. 1
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I I I I I I I
0 0 0 0 0 0 0
oJ 0 _ _D _1" o_1
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_o

-CO

_0_1

_0

I

-0_1

I

W

I

Q01--

0
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BEG I N

REW 5

_EW 6

WEF 5

LOAD F, G,TI ,T2,FI,GI,T3,20,DT,TS, Q,QI,TQ,DS,ON

REw 5

WEF 6

SAVE 5TI, T, F, F, G, G, Q, Q,T2, T,FI, F,GI, G,Ol, Q,T3, T,

REW 6

SUBT 20,TQ 20

SAVE 620 T

SUBT 20,TO 20

SAVE 620 T

SUBT 20,TQ 20

SAVE 620 T

SUBT 20,TO 20

HEAD2I

SAVE 62O T

SuBT 20,TQ _0
SAVE 620 T

SUBT 20,DT, 20

SAVE 620, T,

IF 20,TS,HEAD_I

HEAO22SUBT 20,DS, 20
SAVE 62U, T,

IF 20,ON,HEAD22

SUBT 20,TQ 20

SAVE 620, T

SUBT 20,TQ 20

SAVE 620, T

SUBT 20,TQ 20

SAVE 620, T

SUBT 20,TQ 20

SAVE 620, T

SUBT 20,TO 20

SAVE 620, T

SUBT 20,TQ 20

SAVE 620, T

SUBT 20,TQ 20

SAVE 620, T

:.. SUBT 2O,TQ 20

SAVE 620, T

SUBT 20,TQ 20

SAVE 620, T

SuBT 20,TQ 20

SAVE 620, T

SUBT 20,TQ, 20,

SAVE 620, T

SUBT 20,TQ, 20,

SAVE 620, T

SUBT 20,TQ, 20,

SAVE 620, T

SOBT 20,TQ, 20,

SAvE 620, T
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SUBT 20,TO, 20,

SAVE "620, T

SUBT 20,TQ, 20,

SAVE 620, T

SUBT 20,TQ, 20,

SAVE 620, T

SUBT 20,TQ, 20,

SAVE 620, T

SUBT 20,TQ, 20,

SAVE 620, T

SUST 20,TO, 20,

SAVE 620, T

RINT 20,T

LOAD ZO,,5,0N,D2,D3,PC,RZ,ZR,TW,TL,RI, S,XX,TR,XO,TI R 2 TN OT

LOAD H

WRITE OPTIMAL FEEDBACK CONTROL

REW 5

REW 6

REW 7

WEF 7

EOUAT TL, T,TL,TF,

TRANP TI , IT,

BRING 5 T,TI, F, F, G, G, 0, 0, T,T2,

MULT IT, Q, 32,

MULT 32,TI, Q,

MULT OT Q Q

MULT OT Q Q

MULT 2 S S

MULT OT S S

MULT OT S S

MULT IT S 32

MULT 32 TI S

BSR i -_

MULT TR, F, 32,

MULT 32,TI F,

MULT TP, G Q,

REW 7

TRANP G, GT

MULT RI ,GT, C,

MULT C, S, K,

MULT G, K, GK,

SUBT F,GK, CF,

SAVE 7CF*CF, K, K, T, T,

BRING 6 T,Pl,

SUBT ZR, F, MF,

TRANP G, GT,

MULT RI,GT, C,

MULT G, C, GC,

JUXFC I_F,GC, TH,

TRANP F, FT,

JUXTC O,FT, BT,

JUXTR TP,BT, PH,

ADD TI T2 -- TI,

Fig. 3
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r

MULT .5,TI T2,

EQUAT Pl, T,ON,CD, A PRINT TIME MUST COME BETWEEN TL

SUBT TF, T, TU, AND THE LAST BREAK TIME,

EQUAT T,TF,

ETPHI PH TU,Pl ,HT,

MULT TU D3 34

MULT HT,D2, 35,

ADD 34 35 34

RICAT S Pl _ C,3_,PC,XX, S, K,AL,

RINT S, P

IF ZO,ZO,HEAD B

HEAD 5BRING 5 T,TI, F, F G G O Q T T2

RINT TI, T

MuLT IT, Q, 3_,

MuLT 32 TI Q,

MULT OT 0 O

MULT OT Q Q

BSR I 5

MULT TR, F, 32

MULT 32 TI F

MULT TR G G

MULT G K GK

SUBT F GK CF

SAVE VCF,CF, K, K, T, T,

HEAD ISUBT ZR, F, MF,

TRAND G GT,

MULT RI,GT, C,

MULT G, C, GC,

JUXTC MF,GC, TP

T_ANP F, FT,

JUXTC Q,FT, BT,

JUXTR TP,BT, PH,

ADD T1 ,T2, T1,

MULT ,5,TI, T2
1

HEAD 61F PI,T2,HEAD 2

EQUAT T2, T,ZO,CD,

IF ZO,ZO,HEAD 3

HEAD 2EOUAT PI , T,ON,CD

HEAD 3SUBT TF, T, TU,

EQUAT T,TF,

ETPHI PH,TU,Pl ,HT,

MULT TU,D3, 3q

NULT HT D2 35

ADD 34 35 34

RICAT S Pl, C,34,PC, S, K,AL,

HEAD 8MULT G, K, GK,

SUBT F,GK, CF,

SAVE ?CF,CF, K, I<, T, T.

IF TW, T,HEAD 4

HEADIOIF ,5,CD,HEAD 5

BRING 6 T,PI,

IF ZO,ZO,HEAD 6

HEAD 4MULT ON Q Q

Fig. 3
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JUXTC Q FT BT

JUXTR TP BT PH

LOAD TW,

IF T,TW,HEADIO

BSR 4 7

BLOT IT

BRING V T,TI,CF,CF, K, K, T,T2,

LOAD LM TM

MULT LM, K,

BSR V V

K

ADD TI,T2, T3,

MULT ,5 T3 HT,

SUBT HT T2 TU

MULT TR XO XO

EQUAT HT T

MULT G K GK

SUBT F GK CF

ETPHI CF,TU,PH,

MULT K,XO, -U,

MULT K,TR, KR,

MULT TI,XO, X,

TRANP TR, ZK,

MULT ZK, S, 4] ,

MULT 41TR S

MULT

RINT

WRITE

MULT

H X HX

T2, S, P KR, K XqXO -U,-U HX AL

THE PRECEDING WERE P, K, X, AND -U AT INITIAL TIME,

PH,XO, 1,

EQUAT I,XO,ZO,CD,

HEAD VBRING V T,TI,CF,CF, K, K, T,T2,

IF T,TM,HEAD24

LOAD LM

MULT LM, K, K

MULT G K GK

m[]RT F GK CF

HEAD24BSR V 7

IF T2,TI,HEAD 9

SUBT T2, T, TU,

ETPHI CF TU,PH,

MULT PH,XO, XO,

EOUAT T2, T,

MULT TI ,XO, X_

MULT K,XO, -U,

MULT K,TR, KR,

MULT H X HX

JUXTR KR,RZ, *4,

JUXTR *4, X, *5

JUXTR *5 RZ Z5

JUXTR ZS,HX Z6

JUXTR Z6 RZ Z7

JUXTR ZV -U *7

RINT T_ *7_INF

---_DD T1,T2 T3
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MULT .5,T3 HT

SUBT HT, T TU

ETPHI CF.TUtPH,

MULT PH,XO XO,

EQUAT HT, T,

IF TI,TL,HEADI2HEAD ?

HEAD 9SuBT TI, T, TU,

ETPHI CF,TU,PH,

MULT PH,XO, XO,

EQUAT TI, T,

BRING 7 T,TI,CF,CF, K, K, T,T2,

IF T,TM,HEAD23

LOAD LM

MULT LM, K, K

MULT G K GK

SUBT F GK CF

HEAD23BSR 7 7

ADD TI,T2, T3,

MULT ,5,T3, HT

SUBT HT, T, TU,

ETPHI CF,TU,PH,

MULT PH,XO, XO,

EQUAT HT, T,

IF TI,TL,HEADI2H_AD 7

HEADI2BRING ?CF,CF, K, K, T,T2,

SUBT T2, T, TU,

ETPHI CF,TU,PH,

MULT PH,XO, 32,

MULT TI 32 X

MULT K,32 -U

MULT K,TR, KR

MULT H X HX

RINT T2, KR, K X, X -U,-U HX AL

WRITE THE PRECEDING WERE K, X, AND -U AT FINAL TIME,

END

F 6 6

--,6 -.76 ,00296875 0 0

0 1, 0 0 0

0 0 0 102.4 -,4

0 0 0 0 0

I, 0 0 0 0

0 0 0 0 I.

0 0 0 0 0
0

G 6 i

--2,375 0 0 0 0

0

TI 1 i

17.5

T2 i I

12,5

F1 6 6

--,6 -,76 • 00296875 0

Fig. 5
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0 i. 0

0 0 0

0 0

i02,4 -.4

0 0 0 0 0

I. 0 0 0 0

0 0 0 -.2 0

0 0 0 0 0

--.2

G1 8 1

-2 • 3-/5 0 0 0 0

0 0

T3 1 1

-15.

20 1 1

20.

DT 1 I

.25

TS 1 1

10.05 _

Q 6 5

99.

0 0 0 0 0

0 0 O 0 .0001

0 0 -.0001 0 0

0 .00005 -.00005 0 0

0 0 -.Oouu5 .00005 0

0 0 -.0001 0 0

.0001

Ol 6 6

99. 0 0 0 0

0 o 0 0 0

0 0 0

0 0 0

0 0

0 0

0 .00005 -.00005 0 0

0 0 -.00005 .00005 0

0 0 0 0 0

0

TO i i

.05

I 1

.5

ON i I

1.025

ZO I I

• 5 i 1

.5

ON 1 1

i.

0

D3 1 3

0

PC I 4

1 •

11
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0 0 0 I.

RZ I 6

0 0 0 0 0

0

Z_ 6 6

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
0

TW I 1

2,005

TL 1 ]

20.

RI 1 1

100,

S 6 6

0 0 0 0 0

0 0 5. 0 0

0 .17453293 0 0 ,005

0 0 -,005 0 0

0 .0005 -,0005 0 0

0 0 -.0005 .0005 0

0 ,17453293 --,005 0 0

,011092348

xx 6 6

I. 0 0 0 o

o o I. 0 0

0 0 0 0 I.

0 0 0 0 0

0 I. 0 0 0

0 0 0 I. 0

0 0 0 0 0

I,

TR 6 6

I. 0 0 0 0

0 0 i. 0 0

0 0 0 0 I.

0 0 0 0 0

0 I. 0 0 0

0 0 0 I, 0

0 0 0 0 0

I°

xo 6 6

0 0 0 0 0

0 -.0625 -,0781 -o0938 0

0 0 -16. -20. -24.

0 0 0 120. I00,

80. 0 0 0 I00,

I00, i00, 0 0 0

Fig. 3
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-20. -20 • -20• 0 0

0

TI 6 6

I• 0 0 0 0

0 0 I• 0 0

0 0 0 0 i•

0 0 0 0 0

0 i• 0 0 0

0 0 0 I• 0

0 0 0 0 0

I.

i I

• 25E4

2o i !

2.

TN i i

I0.

OT 1 1

.I

H 1 15

0 i• -,00390625

0

TW I I

1,005

TW 1 :

.005

TW 1

.005

IM 1 1

1•

TM 1 1

.8

LM 1 i

1.

LM I i

1.

L M i i

1.

I_M 1 1

1.

LM i I

i,

L.M 1 1

i,

LM i I

I•

LM 1 1

i,

LM i 1

1•

LM I I

i,,

LM 1 1

Fig. 3
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LM I i
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LM I i
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JUNE 28* 1965

BE_IN

REW 5

REW 6

iEF

LOAD

REW

WEF

F'I

5

GQTI ,T2QFI ,GI •T.3e_OaI')T,T_,

5 .

6

SAVE

_FW

5TI t To F, Fo Go G, Q, Q_T21 T,FIt F,GIt GoQlt Q,T3* Tt

SUBT 20,TQ 20

_AV_ _ T

SUBT 20,TQ 20

SAVF 6?0 T

SUBT 20,TQ 20

SAVE 6_0 T

SUBT 20,TQ 20

SAVE 620 T

SUBT 20,TQ 20

SGVF 670 T

HEAD21SUBT 20oDT* 20
SAVE

IF

_EADP_SUBT

SAVE

IF

SUBT

SAVE

SUBT

SAVE

SUBT

SAVE

SUBT

SAVE

SUBT

SAVE

SUBT

SAVE

SUBT

SAVE

SUBT

SAVE

SUBT

SAVE

SUBT

SAVE

SUBT

SAVE

SUBT

SAVE

SUBT

SAVE

SUBT

20tTS_HEAD21

620, T,

20,_N,HEAD2_

20,TQ 20

_o, T

20,TO 20

620, T

20,TQ 20

@_0, T

20,TQ 20

620, T

20tTQ 20

6209 T

20,TQ 20

620, T

20,TQ 20

_0, T

20,TO

6201

20iTQ

6?0•

20*TQ

620,

20,TQ,

620,

20,TQ,

6_0,

20,TQ*

620,

20,TQ,

20

T

20

T

2O

T

20,

T

20,

T

20,

T

20,

Fig. 4
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SAVE 620o T

SURT 20,TQ, _0=

SAVE 620$ T

SURT 2O.T_. _Ol

SAVE 620, T

SU_ T 2n_TOt 20,

SAVE 620, T

_LI_ T 2A_TQ_ 20_

SAVE 620 t T

SUBT Pn_TQ_ 20_

SAVE 620, T

_LIAT 8A_TQ_ 20_

SAVE 620, T

_IMT _n.T

LOAD ZO,.5,0N,D2,D3,PC,RZIZR,TWiTL,RI, S,XX,TR,XO,TI R 2 TN OT

lOaD H

WRITE OPTIMAL FEEDBACK CONTROL

_FW 5

REW 6

RFW ?

WEF 7

F_(IAT TI. TtTI ITFI

TRANP TI, IT,

B_TN_

MULT IT, Qo 32,

MUI T ]_.TT. Ol

MULT OT Q Q

MULT OT _

MULT 2 S S

M|JLT IT S 32

MULT 32 TI S

BS_ 1

MULT TR, F, 32,

MULT 32.TI Fo

MULT TR, G G,

REW 7

TRANP G, GT

MULT RI_GT_ _

MULT C, S, K,

MULT G, K, GK!

SUBT FtGKo CFo

SAVE 7CF,CF! KI Kt T! T,

BRING 6 T,Pl,

SUBT ZR, F, MFt

TRANP G, GT,

MULT R!,GT, Cq

MULT G, C, GC,

JU×TC MF,AC. TPI

TRANP F, FT,

JU×TC Q,FT, RT.

JUXTR TP,BT, PH,

ADD T1 T2 Tl,

MULT ,BtTl T2,
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MULT

MU[ T

ADD

_ICAT

RINT

IF

HEAD 55RZ NG

I_INT

MULT

MULT

MULT

MUL T

BSR

MULT

EQUAT Pit T_ON_CDo

SURT TF, Tm TU.

EQUAT ToTFI.
ETPHI PH TUIPl ,HT,

TU D3 34

34 35 34

St P

7_.Z_aHFA_

5 T_Tlt F_ F G G Q O T T2

T1, T

IT, Q_ 32,

3_ TI O*

OT Q Q

OT Q 0

1 B

T_. F, _

MULT 32 TI F

MULT T_ G G

MULT G K GK

SUBT F GK CF

SAVE 7CF_CF_ K_ Kt To T,

HEAD 1SUBT Z_, Fi _ MF,

TRANP G GT,

MULT RI,_T. Ci

MULT G, C, GCt

JUXTC MFtGCt TP

TRANP F, FT,

JUXTC Q,FT. BT,

JUXTR TPQBTt PHi

ADD TI,T2i TI,

MULT ,BiTll T2

HEAD &IF PI,T_°HEA_

EQUAT T2, ToZOtCD_

IF ZQ,70.HEAD 3

HEAD 2EQUAT Pit T_ON,CD

HEAD 3SUBT TF, T, TU,

EQUAT TiTF_

ETPHI PH,TU_p1,HT!

MULT TU,D31 34

MULT HT D2 35

ADD 34 35 34

RICAT S PI, C,34_PC_

HEAD 8MULT G, Kt GK_

SUBT F_GK_ CFt

S_ K_AL,

SAVE 7CF,CF, K, K_ T, T,

IF TW_ T,HEAD

HEADIOIF ,5,CD,HEAD B

BRING _ T,Plt

IF ZOiZO_HEAD 6

HEAD 4MUL,T ON Q O

MULT OT _ Q

A PRINT TIME MUST COME BETWEEN TL

AM D TH E _AR_ _DE^ K T!ME:

Fig.
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MULT OT Q Q

MtJl T OT r_ Q

JUXTC Q FT BT

JUY.TD Tp BT PH

LOAD TWo

IF T. Tw ib,IF _ It_

BSR 4 7

Rl P,T ! T

BRING

OAD LM TM

MULT LM, K,

-mSF_ 7 ?

ADD T1 ,T2,

Mill T ._ T'_

SUBT HT . T2

MULT T.D V.O

EQUAT HT T

MULT G K

SUBT F GK

7 T,TI,CF,CFo Kt K, TtT2,

K

T3,

HT,

TU

XO

CF

_T_ CFtTU.D_. I

MULT K,XO_ -Ug

MULT K.T_I KR,

HULT TI,XO, Xt
TRANP T_. 7K.

MULT ZKo St 41_

Mt}LT 4| T_ S

MULT H X HX

_INT T_. S, P EQ, K _'_ -U_-U HX AL

WRITE THE PRECEDING WERE P, K, X, AND -U AT INITIAL TIME,

MULT FH,XO, I I

EQUAT I_XO4ZO,CD,

HEAD 7BRING 7 TeTI,CFoCF_ Ko Ko ToTR_

IF ToTMoHEAD24

LOAD LN

MULT

MULT

SUBT

HEAD24B_R

LH, Ko K

G K GK

F GK CF

7 7
IF T2tTI*HEAD 9

SUBT T2, Tt TU,

ETPHI CF TUoPH,

MULT PH.Y_o XO,

EGUAT T2, T,

MLJLT TI,_O, X.

MULT K,XO, -U,

MULT KQT_, K_.

MULT H X HX

JUXT_ KR,_7. .4.

JUXTR *4, X, "5

JUXTR *B P7 7S

JUXTR Z5oHX Z6

JU).TR z_ _z z7

JUXTR Z7 -U -7

_L@. h-
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RINT T_ "7, INF

ADI') TI ,T_ T3

MULT e5.T3 HT

SURT HT • T TU

ETPHI CF,TU,PH,

MtJ/T PH . _K.O _('_-

EQUAT HT• T,

IF TI tTL .HEAD12HEAF} "7

HEAD 9SUBT T1 • Ti TUt

ETPHI CF. TU .I::)H •

MULT PHtXO_ XO•

Er_IIAT T1 . T,

BRING

IF

LOAD LM

MULT LM, K, K

MULT G K GK

SURT F _K CF

HEAD23BSR ? ?

MULT ,5oT3_ HT
SURT HT, T, TUt

7 T•TI,CF,CF, Kt K, TIT21

T.TM.WFA_

ETPHI CF_TU,PHo

MULT PH.XO, " XO,

EQuAT HT, TQ

IF TI_TLQHEAD12HEAD 7

HEAD12BRING 7CF,CF, K, K_ T_T2,

SUST T2, To TUt

ETPHI CF,TU_PH•

MULT PH,XOQ 3_.

MULT TI 32 X

MULT K,32 -U

MULT K•TRI KR

MULT H X HX

RINT T2_ KR, K

END

F _

0

X, X -Uo-U HX AL

THE PRECEDING WERE K, X, AND --U AT FINAL TIMF.

-,76 ,00296875

I,
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0 0

I. 0
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0 0
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O 0 Q

0 0 0
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0 0 0

G 6 1

-_ • 375 0
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Fig. 4
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0 0 0 0
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0
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P_

RZ

ZR 6

TW

2•005

Tt

RI

100.

S

0

0

0

0

Q

0

1

6

1 1

20.

1, 1

6

0

0

I •

1 •

0 0 0 0

0 0 0 0

0 0 0 0

O 0 0 0

0 0 0 0

0 0 0 0
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0 0 0 0

6

0 0

Q _-,

00 ,17453293

0

0

0

0

0

•005

9

0 •0005

0

0 •17453293

,011092348

Q -.005

-,0005

Q -. ooos

- • 005

,0005

XX 6 6

i,

0

0

0

O
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Q

I,

TR G
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O
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1,
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0

0
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XO 6 6
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0 0 0 0
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80o

10o.

-20,

0

0

lot3.

-20,

0

0

-20.

I00.

0

0

TI 5 6

1,

1 •

1 1

o

0

0

0

i,

0
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0

1,

0
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0

0
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0
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I,
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I0.
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.I
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O

-,00390625

TW 1 1

1.00_

TW I i

• 00_

TW 1 1
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.8
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I.
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I,
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JUNE 28, 1965

BEG I N

REW 5

PEW 6

WEF

LOAD

PEW

WFF

FI

5

GQTI,T2,FI,GI,T3o20,DT,TS,

5

6

QaQI ,TQ,_,ON

SAVE

PEW

5TI, T, F, F, G, G, Q, Q,T2, T,FI, F,GI, G,QI, Q,T3, T,

SUBT 20,TO 20

5AVR &PO T

SUBT 20,TQ 20

5AVF 6_0 T

SUBT 20,TQ 20

SAVE 620 T

SUBT 20,TQ 20

SAVE 620 T

SUBT 20,TQ 20

SAVE 6PO T

HEAD21SUBT 20,DT, 20

SAVE 620o Tt

IF 20,TS,HEAD21

HEAO22SU_T 20_DS, ' 20

SAVE 620, T,

IF 20:ON:HEAD22

SUBT 20,TQ 20

SAVE 620, T

SUBT 20,TQ 20

SAVE 620_ T

SUBT 20,TQ 20

SAVE 620_ T

SUBT 20,TQ 20

SAVE 6_0, T

SUBT 20,TQ 20

SAVE 6_0, T

SUBT 20,TQ 20

SAVE 620_ T

SUBT 20,TQ 20

SAVE 620_ T

SUBT 20,TQ 20

SAVE 820, T

SUBT 20,TQ 20

SAVE 620_ T

SUBT 20,TQ 20

SAVE 6_0, T

SUBT

SAVE

SUBT

SAVE

SUBT

SAVE

SUBT

20,TQ, 20,

620, T

20,TQ, 20,

620, T

20,TQ, 20,

620, T

20,TQ, 20,

Fig. 9
I
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SAVE 620, T

SUBT 20,TOe POo

SAVE 620, T

_URT 20.T_. _'0,,

SAVE 620 o T

SAVE 620 o T

SLJFIT _0 . T(3a _(_.

SAVE 620 t T

__1JAT ._0. TQ, 2_,

SAVE 620. T

_U_T _n:TQl 20.

SAVE 620, T

RIMT _n_T

LOAD ZO,eS,0N.D2,D3tPC,RZtZRtTWtTL.RII S,XX.TR,XO.TI R 2 TN OT

wRITE OPTIMAL FEEDBACK CONTROL

PEw 5

REW 6

I_EW ?

WEF "7

_'_uAT TI ; T;TL'_TF;

TRANP TI, IT.

BRING _ T.T1 • F. _'. G. _- 0" _, TeT2e

MULT IT. Q, 32.

MtJl T 32.TI • El.

MULT OT Q Q

Mt;I T OT Q Ca

MUL T 2 S S

MLJI T I T _ "4_

MULT 32 TI S

B._R ], 5

MULT TR, Ft 32,

MULT _21TI Ft

HULT TRt G G.

REW "7

T_ANP G. GT

MUL T RI.r_T, C,

MULT C, S. K.

MULT G, Kil GKs

SUBT F_GK, CF,

SAVE ?CF.CF. K. K_ T. T.

BRING 6 T.PI,

SUBT Z_. F. MF,

TRANP G. GT_

MULT RI.GT. c.

MULT G. C, GC.

JUXTC MF.AC.. TP,

TRANP F, FT,

JU×TC QoFTt BT.

JUXTR TP,BT, PHi

ADD T1 T2 TI,

MULT .55T1 T2,

Fig. 5
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EQUAT PI, T,ON,CDo

SUBT TF, T, TU.

EQUAT T, TF t

ETPHI PH TUQPl ,HT,

MULT TU D3 34

MULT HT.n2. 35.

ADD 34 35 34

I_ ICAT

RINT

IF

HEAD 5BRI NG

RINT

A PRINT TIME MUST COME BETWEEN TL
ANn THF LAST R_FAK TIM_.

S, P

ZOa7OaHEAD

5 T,Tlo F, F G G Q Q T T2

TI. T

32t

Q

MULT IT, Q,

MULT 32 TI

MULT OT Q

MtJ|T OT

BSR Z 5

NULT TO. F=

MULT 32 TI

MULT TR G

MULT G K

SURT F _

SAVE

HEAD I_URT

TRANP

MULT

MULT

3P

F

G

GK

CF

7CF,CF, K, K, T, To

Z_, FQ' MF I

G GT,

RI,GT, C,

G, CQ GC,

JUXTC MF_GC_ TP

TRANP F, FT,

JUXTC Q,FT_ BT,

JUXTR TP,BT, PH,

ADD TI_T_t TI_

MULT eS,T1, T2

HEAD 61F PI tT2,HEAD 2

EQUAT T2, T,ZO,CD,

IF ZO,ZO,HEAD 3

HEAD 2EQUAT PI, T,ON,CD

HEAD 3SQBT TF_ T_ TVt

EQUAT T,TF,

ETPHI PHgTU,Pl ,HT_

MULT TU,D3, 34

MULT HT D_ 35

ADD 34 35 34

RICAT S P|, C,34,PC,

HEAD 8MULT G, K, GK,

SUBT F,GK, CF,

S, K _A[. t

SAVE 7CF,CF, K, K, T, T,

IF TW, T,HEAD 4

HEADIOIF ,5,CD,HEAD 5

BRING _ T,PI,

IF ZO,ZO,HEAD 6

HEAD 4MULT ON Q Q

MULT OT Q Q

Fig. 5
J
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MULT OT Q Q

MlJl T OT _

JUXTC QFT BT

JUYTR TP RT PH

LOAD TW,

IF T.TW.H_Anlh

BSR 4 7

Rl hT IT

BRING

IOAn

MULT LM, K, K

B£R 7 7

ADD TI,T2, T3,

MULT .5 T3 HT,

SUBT HT T2 TU

7 T,TI,CF,CF, K, K, T,T2,

[M TM

MULT TP xo XO

EQuAT HT T

MUI T G K AK

SUBT F GK CF

_TPHI CF.TU,PH,

MuLT K,XO, -U,

MULT K.T_, KR.

MULT TI,XO, X,

TRANP T_. 7K.

MULT ZK, S, 41,

MIll T 41 T_ S

MULT H X HX

RINT T2, S, P KP" _ Xl_n I[]'I U H_ _I

WRITE THE PRECEDING WERE P, K, X, AND -U AT INITIAL TIME.

MLJLT PH,XO, l,

EQUAT 1,XO_ZO,CO,

HEAD 7BRING 7 T,TI,CF.C_. _. _. TITP,

IF T,TMoHEAD24

LOAn LM

MULT LM, K, K

MULT G K GK

SUBT F GK CF

HEAD24BSR T 7

IF T2,TI,HEAD 9

SUBT T2, T, TU, ,

ETPHI CF TU,PH,

MULT PH,XO, XQ,

EQUAT T2, T,

MULT TI,XO_ X,

MULT K,XOo -U,

MULT K_TR_ KR,

MULT H X HX

JUXTR KR,RZe *4Q

JUXTR *4, X, *5

JUXTR "5 RZ 75

JUXTR ZS,HX Z6

JUXTR Z6 RZ ZT

JUXTR Z7 --U *T

Fig. 5
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RINT T, *Te INF

ADD T1,TP T3

MULT ,5oT3 HT

SUBT HT, T TU

ETPHI CFoTUiPHo

MLJLT PH.Y_ XQ.

EQUAT HTo To

IF T1.TI .HFA_I_HEAn ?

HEAD 9SUBT TI, To TUe

ETDHI CF_TU,PH.

MULT PHoXOo XOo

F_IIAT T1, To

BRING

IF

LOAD L.M

MlJLT LMo Ko K

MULT G K GK

StJRT F GK CF

HEAD23BSR 7 7

ADD T1.T2. T3o

MULT .5oT34 HT

SUBT HTt Tt TUt

7 ToT1 oCFoCF, K$ Ko ToT2o
T.TM.HFA_2_

ETPHI CFoTUoPH,

MULT PHIXOo XO,

EQUAT HTo To

IF T1,TLoHEAD12HEAD 7

HEAO12BRING 7CF,CFo K, Ko ToT2o

SUBT T2t T9 TUt

ETPHI CFoTUoPH*

MULT

MULT

MULT

MULT

MULT

RINT

WRITE

END

F

PHtXOo _t

TO 32 X

Kt}_ -V

KoTRo KR

H X HX

T2o KRo K X, X -U,-U HX AL

THE PRECEDING WERE K. X, AND --U AT FINAl TIMEe

-.6 -.76 ,00296875

0 it

o o
0 0

1. 0

0 0

0 0

0

0 0

0 0 0

0 i02,4 -,4

0 0 0

0 0 0

0 0 I.

0 0 0

T!

6

-2 • 375 0 O 0 0

T2

17.5

1

12.5

._':tg. 5
d
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T

FI 6 6

-.6 -,7._

0 1,

0 0

__1 •

0

0

-.2

G1 6

0 0

0

0 0

0 !02-t4

0 0

0 0

0 0 -.2

0 0 0

0

0

0

0

0

0

--2,375

0

73 1

0

D

0 0 0

2O 1

DT 1 1

,,?'5

TS 1 1

lo.r}_

Q 6

c)_.

0

0

oO001

QI

99,

O

0

0

aO000_

6

0 ,00005

0

0

Q

0

0

0 0

0 0

-.0001

-,00005

-_nNOl

0

0

.00005

0

: 000 !

0

0

0

0

0

0

0

0

0

0

-,00005

0

0

0

0

0

0

0

0

0

0

0

0

0

0

TO 1 1

,05

DS 1 1

,5

.ON I I

1,025

ZO 1 I

O

• 5 1 1

ON 1 1

1,

D2 1 3

0 1.

D3 1 3

Fig. 5
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ZR 6 6
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0 0 0 0 0

0 0 O 0 0
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O O 0 0 0

0

TW 1 l

2. 005
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I00,
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0
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0 0 0

O I, 0

0 0 0
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BEGIN

LOAD

MULT QI,HI,

TRANP HI, _Y

MULT 2Y 2Z

SURT Z_, F,

T_ANP Fo FT

T#ANP 6i _T

MULT ON GT

ML&T G C

NORM Q, NO

UnDM 5 N_

Fi GqQIo T,Z#IONo DoPC,I3, JQ X, HaTH H1 XI XH Y_ H_

2Z,

el

1

PSEUO NO PQ RK

MUIT P_ N_ M]

DECOM M1, S,SJ,ER,PE, EoRKt

MULT _ _

MULT SJ 5 B

MULT £.J C C

BLOT NQ,

JUYTC I _, 2.

JUXTC Q FT 3

JtJYT_ _ _ _Hi

ETPHI PH, TtPH,

#!CAT Q:PH: C_ D:PC:!3: P: K,AL,

RINT P*PE_ K, K

MULT _: K: GK

SUBT F GK FC

ETPHI FC T PI

MULT ZR G GM

TRNSI J, K_ON, X,PI,GM, HtT2,

TRNSI J, K_0N,XI,PI,GM,H2tT2,

TRNSI J, K,0N,X2,PI,GM, HtT21

TRNSI J, K,ON,X3,Pl,GM,H2,T2,

END
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